
On the Difficulty of Software-Based Attestation of
Embedded Devices

Claude Castelluccia, Aurélien Francillon,
Daniele Perito

INRIA Rhône-Alpes
{ccastel,francill,perito}@inrialpes.fr

Claudio Soriente
University of California, Irvine

csorient@ics.uci.edu

ABSTRACT

Device attestation is an essential feature in many security pro-
tocols and applications. The lack of dedicated hardware and
the impossibility to physically access devices to be attested,
makes attestation of embedded devices, in applications such
as Wireless Sensor Networks, a prominent challenge. Several
software-based attestation techniques have been proposed
that either rely on tight time constraints or on the lack of
free space to store malicious code. This paper investigates
the shortcomings of existing software-based attestation tech-
niques. We first present two generic attacks, one based on
a return-oriented rootkit and the other on code compres-
sion. We further describe specific attacks on two existing
proposals, namely SWATT and ICE-based schemes, and ar-
gue about the difficulty of fixing them. All attacks presented
in this paper were implemented and validated on commodity
sensors.

Categories and Subject Descriptors

K.6.5 [Operating Systems]: Security and Protection

General Terms

Experimentation,Security

Keywords

Software-Based Attestation, Return-Oriented Programming,
Code Compression, Embedded Systems, Wireless Sensor
Networks, Indisputable Code Execution, SWATT

1. INTRODUCTION
Embedded systems are employed in several critical environ-

ments where correct operation is an important requirement.
Malicious nodes in a Wireless Sensor Network (WSN) can be
used to disrupt the network operation by deviating from the
prescribed protocol or to launch internal attacks. Preventing
node compromise is difficult; it is therefore desirable to detect

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’09, November 9–13, 2009, Chicago, Illinois, USA.
Copyright 2009 ACM 978-1-60558-352-5/09/11 ...$10.00.

compromised nodes to isolate them from the network. This
is performed through code attestation, i.e., the base station
verifies that each of the nodes is still running the initial ap-
plication and, hence, has not been compromised. Attestation
techniques based on tamper-resistant hardware [7], while
possible [13] are not generally available, nor are foreseen to
be cost effective for lightweight WSNs nodes.

Software-based attestation [23, 26, 28] is a promising solu-
tion for verifying the trustworthiness of inexpensive, resource
constrained sensors, because it does not require dedicated
hardware, nor physical access to the device.

Previously proposed techniques are based on a challenge-
response paradigm. In this paradigm, the verifier (usually
the base station) challenges a prover (a target device) to com-
pute a checksum of its memory. The prover either computes
the checksum using a fixed integrity verification routine or
downloads it from the verifier right before running the proto-
col. In practice, memory words are read and incrementally
loaded to the checksum computation routine. To prevent
replay or pre-computation attacks, the verifier challenges
the prover with a nonce to be included in the checksum
computation. Since the verifier is assumed to know the exact
memory contents and hardware configuration of the prover, it
can compute the expected response and compare it with the
received one. If values match, the node is genuine, otherwise,
it has most likely been compromised.

Contributions.
This paper highlights shortcomings of several attestation

techniques for embedded devices and shows practical attacks
against them. First, we present a Rootkit for embedded
systems – a malicious program that allows a permanent
and undetectable presence on a system [12] – that circum-
vents attestation by hiding itself in non-executable memories.
The implementation of this attack uses a technique called
Return-Oriented Programming (ROP) [27, 4], a generaliza-
tion of return-into-libc [30, 20, 18]. ROP can be used by the
adversary to compromise the node and perform arbitrary
computations without injecting code. Node compromise is
achieved by reusing and controlling pieces of code already
present in the device’s memory. Second, we present an attack
that uses code compression to free memory space which can
be used to hide malicious code.

We then describe some specific attacks against previously
proposed attestation protocols, ultimately showing the diffi-
culty of software-based attestation design.

���������		
���

�
��

������ ������		�
���

�
��

�������	
�

��	��

�
���

���

���
��

�
��
�
����

���
�����

�����

�
����

�

���������

��	

�
��
�
����

������
�����

���

��������

�
��������

�
����
��

 !���
����
��

����!���

����"

Figure 1: Overview of memories on a MicaZ node;
the EEPROM and external memories are accessed
from the I/O Registers.

Organization.
Section 2 introduces assumptions and surveys relevant

work in the area of attestation for embedded devices. Sec-
tion 3 presents two generic attacks that highlight flaws in
several existing protocols, while Section 4 introduces details
of attacks implemented against SWATT [26] and ICE [22].
The paper concludes in Section 5.

2. ASSUMPTIONS AND OVERVIEW OF PRE-

VIOUS WORK

2.1 Assumptions

Hardware platform description.
Throughout the paper we use the MicaZ, an off-the-shelf

wireless sensor node. The MicaZ is an Atmel AVR based de-
vice with a Harvard memory architecture. Its memory layout
is depicted in Figure 1, which includes program memory, data
memory and external memory. Program memory is a flash
memory that contains the application running on the sensor
as well as the bootloader. The latter is a minimal program
that is usually present on most devices to allow remote code
update. Code updates are often required when, for example,
a vulnerability is found and physically maintenance is not an
option. Actually, most embedded devices are equipped with
a bootloader [9], since devices without self-reprogramming
capability would have limited value.

The data memory contains the stack and statically al-
located variables (Data sections) as well as CPU and I/O
registers. The external memory is used to store data collected
from the environment.

While the presented attacks are validated on an experi-
mental platform composed of wireless sensor nodes, they are
not specific to WSNs. They exploit the characteristics of
the micro-controller and device hardware. Proposed attacks
are applicable to any embedded device that uses a similar
micro-controller and communicates via an open channel. For
example, they could be applied to constrained systems embed-
ded in cars [25], home automation and Advanced Metering
Infrastructure (AMI) devices.

Adversary model.
As in other proposals [5, 21, 22, 23, 24, 26, 28, 33], the

envisioned adversary has the objective of installing its ma-
licious code in an executable memory of the target device
and passing the attestation protocol without being detected.

�������� ������

	
����
������
��
�
���

�����
������
��	
�������

��
������

�
��

	��������������

	
���������
�

�
��

�������

�
�������

Figure 2: Basic attestation challenge response pro-
tocol

Before attestation, the attacker has full control over all device
memories. It is therefore able to modify program and data
memory or any other memories on the platform. However,
we assume that at attestation time, while the malicious code
is still running, the attacker has no direct control on the
device anymore. The attack succeeds if the device passes
the attestation protocol despite the presence of the malicious
code.

How the attacker installs its code on the device is be-
yond the scope of this paper and is not discussed in detail.
Malicious code installation could be performed via remote
exploitation of a software vulnerability [9, 10, 11], a non
invasive hardware attack [2] or simply using an off-the-shelf
JTAG programming adapter, if the feature is activated1. Yet
another possibility would be to use a non authenticated or
vulnerable code update mechanism.

Like in other proposals, we assume that the attested device
cannot collude with malicious peers. This could be enforced,
for example, by restricting network access and discarding
the result of the attestation if suspicious network activity
is detected. Finally, we assume that the attacker does not
modify the device hardware. It is also assumed that the
verifier knows the hardware and memory configuration of
the prover.

2.2 Software-based code attestation
All of the existing software-based attestation techniques

are based on a challenge-response paradigm where the verifier
(usually the base station) challenges a prover (a target device)
to compute a checksum of its memory.

This section describes the basic challenge-response protocol
and then presents how it is used by the existing software-
based attestation schemes.

2.2.1 Challenge-response protocol

A challenge-response attestation routine uses a suitable
checksum function H(·) to compute the checksum of the
attested memory. A nonce provided by the verifier (Figure
2) is used as the first input to H(·); then memory words are
sequentially read (from the first to the last) and incremen-
tally input to the function. The output of the last iteration
of the function is the result of the attestation. The nonce
provided by the verifier prevents pre-computation or replay
attacks. Alternatively, the sequence of input memory words
can be determined by a pseudo-random number generator,
initialized with a seed provided by the verifier. In this case,
to make sure that all memory words are used in the com-
putation of the checksum with high probability, the number

1JTAG access can be deactivated before deployment, yet it
is often left active.

of memory accesses increases from n to n ln(n), where n is
the total number of memory words2. Pre-computation or
replay attacks are prevented because it is not feasible for
the attacker to guess the seed ahead of time and learn the
sequence in which memory words are going to be input to
H(·).

2.2.2 Existing Proposals

SWATT.
SoftWare-based ATTestation (SWATT) by Seshadri et

al. [26] relies on timing of sensor responses to identify com-
promised nodes. In SWATT, the program memory is attested
by reading memory words in a pseudo-random fashion, using
a nonce provided by the verifier. If a compromised prover
runs a modified version of the original code, some (or all)
memory accesses must be redirected to memory locations
where the original code words are, in order to compute a
valid response. The authors claim that the overhead caused
by redirection would be easily detected by the verifier. They
claim to have implemented the fastest checksum function and
to have considered the fastest redirection routine and show
that it would still introduce a considerable overhead to check-
sum computation. Section 4.1.1 presents an implementation
of redirection that is faster than the one presented in [26],
showing how difficult it is to design an attestation protocol
based on tight timing constraints. Moreover, as SWATT
does not attest data memory nor external storage, the prover
could store malicious code in one of those memories and
restore it after attestation using ROP (Section 3.1).

Filling empty program memory.
The authors of [33] introduce a protocol where sensors

collaborate to attest the code authenticity of their peers. In
their proposal, the free program memory space of each sensor
is filled with randomness before deployment. The authors
claim that if the whole program memory is verified, the
adversary would have no empty space to store its malware,
unless it deletes parts of the original memory contents (code
or random data). Section 3.2 shows that an attacker can
compress the original code in program memory and gain
enough free space to store and run its malicious program. As
in SWATT, this protocol considers only program memory.

Choi et al. [5] take a similar approach to make sure that
the prover is left with no space where to store the malicious
code at attestation time. In their protocol, the prover uses a
random seed provided by the verifier to produce a pseudo-
random bitstream and uses it to fill the empty memory
locations. Hence, security is based on the prover’s compliance
to the protocol. A malicious node would rather deviate
from the original protocol, still trying to produce a valid
response. This could be achieved, for example, by generating
random bytes on the fly (e.g. using time-memory trade-offs),
instead of storing them in the program memory. Finally,
as in previous protocols, the authors consider only program
memory.

Self-modifying code based attestation.
Shaneck et al. [28] perform attestation transferring the

attestation code from the base station to the sensor at at-
testation time. The authors assume that the adversary is

2Using the Coupon Collector’s Problem.

not aware of the attestation code and that the latter uses
obfuscated predicates to prevent static code analysis. The
protocol relies on the use of self modifying code to prevent
analysis and modifications before the attestation code is
run. Self-modifying code is notoriously difficult to implement
and is therefore a questionable design choice for an attes-
tation protocol. Moreover, most embedded systems have
their program memory on a flash memory which is usually
programmable by pages, after a page erase. It will therefore
be slow and complex, if not impossible, to implement self
modifying code on a flash based device3.

ICE.
Indisputable Code Execution (ICE) based schemes [23,

24, 22] rely on an attestation procedure being performed on
the attestation routine itself, including the program counter
in the computation. The idea behind it, is to prevent the
adversary from mounting an attack where a modified attes-
tation routine located at a different place in memory is run.
Unfortunately, not all platforms make the program counter
available to software. This is the case, for example, of the
AVR family of micro-controllers 4 used on MicaZ devices.
Porting ICE on this family of processors would require com-
plex changes or would just not be feasible. Additionally,
Section 4.2 shows that weaknesses in the checksum function
can be abused to mount a practical attack.

3. TWO GENERIC ATTACKS ON CODE AT-

TESTATION PROTOCOLS
This Section introduces two attacks that are applicable to

several software-based code attestation protocols.
The first attack circumvents malware detection by moving

malicious code between program memory and non-executable
memory, during the code attestation procedure. This is
achieved using a technique called Return-Oriented Program-
ming. The second attack uses code compression to free space
in the program memory in order to hide the malicious code.

3.1 A Rootkit-based attack
Recent work [27, 4, 15] showed that Return-Oriented Pro-

gramming can be used to maliciously execute legitimate
pieces of code on a system, even within the constraints im-
posed by embedded systems [9]. These pieces of code are
called gadgets and are sequences of instructions terminated
by a return instruction. By crafting a stack and carefully
controlling its return addresses an adversary can perform
arbitrary computations5. As a consequence, in order to de-
termine the correct behavior of a device, it is not sufficient
to verify the correctness of its code.

While ROP has been initially introduced to perform arbi-
trary computations without injecting code and hence gain
control over a system, we demonstrate that it can also be

3The MSP430 based Telosb mote with a Von Neumann mem-
ory architecture can execute code present in data memory.
This makes self-modifying code easier to implement. How-
ever, the AVR based Mica family of motes can only execute
instructions from the flash memory.
4MIPS and 8051 suffer from the same limitation.
5If the malicious code has complete control over the data
memory, techniques such as memory safety [6] and stack
canaries cannot prevent the usage of ROP. However, we
notice it could be prevented by Control Flow Integrity [1, 8,
32].

���������	���

���	
�������������	

�����

��������
����	

������������	� ���	
�����������	

���������	���

�	
���	���	���

������	���

����

�����

������

����������������

���	
�������������	

�	��
�	�
�����

�� ��!������������������

����

���	
��������	"�	
�

���	
��������	����

Figure 3: Return-Oriented Programming attack.

used to implement a rootkit. We show that ROP can be
used to hide malware on an embedded system, and prevent
its detection during the attestation procedure. We also show
that ROP can be used to restore the malware after the at-
testation procedure to re-gain control of the compromised
device.

The rootkit hiding code has been implemented on a MicaZ
sensor and only uses the instructions present in the device
bootloader. It works by inserting a hook (a jump instruction)
into the attestation routine. Upon attestation, the hook
triggers the rootkit hiding functionality that deletes the
rootkit code from the program memory. In practice, the
rootkit deletes its code from program memory executing
instructions (using ROP) stored in the bootloader. ROP
is also used, once attestation is completed, to re-install the
rootkit and re-gain control over the device.

Figure 4 presents a generic attestation function. In our
prototype, we insert a hook to the rootkit bootstrap code, by
replacing the first instruction of the attestation function with
a jump. When the latter is invoked the hook transfers execu-
tion to the rootkit bootstrap code which deletes malicious
content (including itself) from the program memory. It then
returns to the attestation code that runs on a clean program
memory. Once attestation is over, the rootkit restores itself
into program memory using ROP.

3.1.1 Rootkit description

Our rootkit requires two hooks: one in the program mem-
ory at the beginning of the attestation routine and one in the
data memory after the attestation function returns (Figure 3).
It is composed of different parts:

Rootkit bootstrap code: the code used to hide and re-
store the malicious payload and itself from program memory.

Rootkit payload: the malicious code, i.e. the malware.
Program memory hook: the hook installed in the

function receiving the attestation request message. Hook-
ing is performed by replacing the first instruction of the
receive_checksum_request function with a jump to the
rootkit, so that the latter is called at each attestation re-
quest.

Data memory hook: the second hook bootstraps the
ROP that restores the rootkit in program memory. This
hook can not be included in program memory (e.g. at the
end of the receive_checksum_request function) without
being detected by the verifier. Therefore, it is added in
the stack, replacing the stored return address of the re-

ceive_checksum_request function.

void receive checksum request(uint8 t nonce){
uint8 t checksum[8];
prepare checksum(nonce);
do checksum(checksum);
send(checksum);
return;

}

Figure 4: Example of attestation function.

Return-oriented programs: the ROP used to move the
rootkit hiding code is composed of two gadgets chains (or
return-oriented programs) in the data memory: the first
(ROP1) is used before attestation to erase the rootkit and
restore the original program memory contents, while the
second one (ROP2) is used after attestation to restore the
rootkit.

3.1.2 Attack description

When an attestation request is received (Initial State in
Figure 3), the rootkit bootstrap code is called by the program
memory hook and performs the following operations:

1. Copies ROP1 to data memory. The rootkit bootstrap
code is 620 bytes, hence it requires the gadget chain
to use 3 reprogramming gadgets [9], each of them
containing 256 bytes of the code to be restored. A
fourth reprogramming gadget is used to restore the pro-
gram memory page where the program memory hook
is present.

2. Writes ROP2 to data memory.

3. Copies the malicious payload to EEPROM (about 1
KByte) where it will be temporarily stored until attes-
tation ends.

4. Places the data memory hook by changing the return ad-
dress (saved on stack) of the receive_checksum_request
function.

5. Removes the malicious payload from program memory.

6. Executes the first gadget chain (ROP1) that restores
the program memory in its original state. Upon comple-
tion ROP1 returns to the address of the receive_check-
sum_request function.

The attestation function is therefore executed over a clean
program memory (Attestation State in Figure 3). Its output
is sent to the verifier and the receive_checksum_request

function returns. When the final ret instruction of this
function is executed the following actions are triggered:

1. The data memory hook launches the restoration gadget
chain (ROP2).

2. The restoration gadget chain writes the rootkit bootstrap
code to program memory and executes it.

3. The rootkit bootstrap code copies the malicious payload
code from EEPROM to program memory.

4. The malicious payload re-installs the program memory
hook in the receive_checksum_request function; the
device is therefore ready to receive a new attestation
request (Initial State).

���������	���

���	

	���	���	������� ���	����	�������

���������	���

���������������� �����	��	��

����������������

�������������	

�������	�� �������	��

Figure 5: Compression Attack.

3.1.3 Experimental results

The rootkit detailed above was implemented on a MicaZ
device and used to attack the attestation protocol presented
in [26]. The entire rootkit fits in 1.6 KBytes, of which, only
620 bytes need to be stored in data memory to be re-installed
with ROP. The remaining code is restored from EEPROM
(or external flash memory). In our experimental setup, the
time required to the rootkit to hide itself is less than 50
milliseconds (Figure 7). Compared to the running time of
SWATT, introduced overhead is about 0.3%.

3.1.4 Discussion

In our implementation the attack relies on a single repro-
gramming meta-gadget that is composed of more than a 100
instructions. Therefore, it does not require a Turing com-
plete gadget set 6. It uses instructions that manipulate the
code memory and that are very likely to be found in devices
that are equipped with a bootloader. Additionally, as this
reprogramming meta-gadget is a part of the default TinyOS
bootloader, it is independent of the application executed on
the device. The presence of this reprogramming meta-gadget
in the bootloader is sufficient to mount the attack.

3.2 Compression attack
Common sensor applications are appreciably smaller than

the available program memory 7. Empty memory locations
contain a fixed value, i.e. 0xFF, which is the default state
of non-programmed flash memory. Even if those locations
are considered for attestation, an adversary could just write
them with arbitrary data and “remember” the original value
when it is requested by the attestation routine.

Previously proposed schemes [33, 7] tried to prevent ma-
licious empty memory usage, filling it with pseudo-random
values at deployment time. Those values are generated, for
example, using a stream cipher with a key only known to the
verifier. The advantage of this approach is clear: random
values do not hinder attestation, since the verifier knows
them, and the attacker cannot simply overwrite those values
because they are used in the computation of the checksum.

The following attack is effective against any attestation

6 Without using a Turing complete gadget set the technique
we use could be refereed to as an hybrid between return-
oriented programming and the borrowed code chunk [18]
techniques. Nevertheless, the availability of a Turing com-
plete gadget set would probably make the attack easier to
implement without changing it’s effectiveness or it’s results.
7For example, MicaZ motes have 128 KBytes of program
memory while a typical application size is between 10 to 60
KBytes.

Application Size Compression Gain (Bytes)
(Bytes) Huffman Gzip PPM

6LowPan Cli 23982 2669 8667 10180
Base Station 15778 1858 5400 7029
Oscilloscope 13276 1679 4740 6091
” Multi-hop 31836 4208 14241 16948
” Multi-hopLqi 23848 2952 9311 11611
Sense 2950 252 484 1124
Avg Gain (B) - 2269 7186 8830
Avg Gain (%) - 12.19 38.61 47.45

Table 1: Compression results for Micaz applications
(similar results where found for TelosB applications).

Sequential Access Random Access
Compression Time Freed Space Time Freed Space
Algorithm (Sec) (Bytes) (Sec) (Bytes)

Huffman 6 2220 269 1252
None 1 - 145 -

Table 2: Compression Attack, using Canonical Huff-
man encoding.

scheme that uses random data to fill empty memory space
before deployment.

The idea is to compress the original code in program
memory in order to free enough space to store malicious
data (Figure 5). At attestation time, the malicious code
can decompress the original program on-the-fly, retrieve the
original program words and succeed in the attestation. As
our tests show on demo TinyOS applications, code size can
be significantly compressed, reducing it by 11.6%, on average
(Table 1). That translates to around 2.3 KBytes of free
space for the considered applications.

For the implementation of the compression attack, we used
Canonical Huffman encoding [14] because of its simplicity and
its ability to start decompression from arbitrary positions of
the compressed stream. Which is important if the attestation
routine requires pseudo-random memory access.

Our decompression routine uses a list of checkpoints in
the compressed stream as a trade-off between space (to keep
the list in memory) and average speed to decompress an
arbitrary memory word. The decompression routine of the
Canonical Huffman encoding was implemented on the Atmel
AVR platform. It uses only 1707 bytes of program memory
and 2565 bytes of data memory. Using Canonical Huffman
encoding, we were able to compress the code of Multi-hop
Oscilloscope for Micaz (31836 bytes) to 27368 bytes. Using
512 bytes for the Canonical Huffman tree and 995 bytes for
the checkpoints, we were left with 2961 bytes of free program
memory to install arbitrary code. Although this seems a
small gain for the attacker, it is sufficient to implement the
attack we presented in Section 3.1.

Table 2 compares the time to access Multi-hop Oscilloscope
code with and without compression for sequential and pseudo-
random access, respectively. For the latter, if compression is
used, total time could be reduced incrementing the number
of checkpoints. While incurred delay could be detected by
a verifier, previously proposed protocols that fills program
memory with randomness [33] do not rely on strict time
bounding.

original added comment
instructions instructions
... previous instr

sbrs r31,7 skip next instruction if bit
7 is set in r31,
i.e. if address > 0x8000

cbr r31, 6 clear bit 6 of address
lpm Z read program memory

at address (r31,r30)
...

(a) Additional instructions of the memory shadowing attack;
r31 holds high byte of random address, (Z is a 16 bit register
and an alias to the 8 bit registers r30 and r31).

Addr. expected changed resulting
MSB address range MSB address range
0 0 0x0000-0x3FFF 0 0 0x0000-0x3FFF

0 1 0x4000-0x7FFF 0 1 0x4000-0x7FFF

1 0 0x8000-0xBFFF 1 0 0x8000-0xBFFF

1 1 0xC000-0xFFFF 1 0 0x8000-0xBFFF

(b) Address translation performed with the memory
shadowing attack in Figure 6(a); as the address range
(0xC000,0xFFFF) is not included in the checksum, the
attacker could store the modified attestation code there.

Figure 6: Outline of the memory shadowing attack,
with inserted instructions and translated addresses.

4. ON THE DIFFICULTY OF DESIGNING

SECURE TIME-BASED ATTESTATION

PROTOCOLS
This section presents attacks on some specific code attes-

tation schemes. Our goal is to show that secure time-based
attestation schemes are hard to design. We first focus on
SWATT [26] and describe an attack that questions its main
design assumption; we then show that SWATT can not be
easily ported to devices others than the ones used in the orig-
inal implementation. Finally, we investigate how to extend
SWATT to prevent those attacks.

The second part of this section considers the ICE proto-
col [23] and presents an attack that violates one of its security
features.

4.1 SWATT
The security of SWATT [26] relies on the time it takes

for the attested device to compute its memory checksum.
Memory words, to be input to the checksum function, are
chosen in a pseudo-random fashion using a seed provided
by the verifier. To succeed in the checksum computation,
a malicious device would need to test each memory access
and, if it points to a location where the malware is stored,
redirect it to the location where the original memory word
was copied, or alternatively “guess” its value. The authors
claim that redirection incurs in a delay that can be easily
detected by the verifier. If response time is below a given
threshold, the verifier can be confident that the prover is not
running malicious code. Precise estimation of the threshold
is therefore crucial to the security of SWATT, in order to
differentiate between modifications to the original checksum
function and transmission delays.

4.1.1 A memory shadowing attack

The authors of [26], assumed that the best attack against
SWATT is to check each address generated in the pseudo-
random sequence. This test would be implemented by per-
forming a test and redirection using branch and compare
instructions. They expect at least 3 machine code cycles for
test and redirection.

Since their implementation of the attestation function main
loop is 23 cycles long, adding 3 cycles for test and redirection
would lead to a malicious attestation function that is 13%
slower than the original one. It is clear that this argument
holds assuming that (1) they have the fastest implementation
of the checksum function 8 and (2) they considered the fastest
implementation of the attack. Such assumptions might lead
to unexpected security flaws. Indeed, test and redirection
can be implemented with less than 3 machine cycles.

Our attack leverages the fact that most of the program
memory available on a sensor is usually empty (i.e., set to
0xFF). If the second half of the program memory (addresses
1xxx...x) is empty 9, all accesses to the last quarter of the
memory (addresses 11xx...x) could be redirected to the
third quarter (addresses 10xx...x) just flipping one bit in
the address. The last quarter of the program memory would
then be shadowed and could be used to hide malicious code.

At each memory access by the attestation routine, the
adversary checks the highest bit of the address to load and,
if it is set, sets the second highest bit to zero (Figure 6(b)).
This can be implemented in an AVR micro-controller with
two instructions (Figure 6(a)). We used the instruction
sbrs R, k (skip next instruction if bit k is set in register R)
followed by a cbr R, k instruction (clear bit k in register
R).

Those two instructions take exactly 2 cycles to execute
(irrespective of the result of the bit test). In our tests, we
also needed to reorder some instructions to avoid corruption
of the address pointer which is later included in the checksum
computation. Instruction reordering does not change the
global timing of the checksum algorithm.

The resulting modified checksum computation routine is
presented in Appendix A. We tested the attack on our com-
plete TinyOS implementation of SWATT and found that
the new routine is only 7.4% slower than the original one
(Figure 7). This result, on a practical implementation, leads
to an attack that is 43% faster than the best attack expected
by the designers of SWATT (13% of overhead). While this
overhead could still be detected by the verifier, it shows that
it is extremely difficult for protocol designers to assess what
is the best attack against their protocols. Indeed, the best
possible attack highly depends on the functionalities present
in the instruction set of the micro-controller and on the set

8 Speed requirements force implementation in assembly lan-
guage, which is a very error-prone process. For example, we
found one bug in the original implementation of SWATT
provided in [26]: the assembly code is not performing the
RC4 table swap properly. Although this is just a simple
coding error, it has a dramatic effect on the quality of the
generated random numbers. In fact, this error decreases
the entropy of the internal state of the stream cipher. At
each RC4 round, one position of the 256 bytes RC4 internal
state is overwritten with the value of a register that is not
initialized.
9 This attack would therefore not be possible if the free
program memory is used or filled with randomness (as in [5,
33]), but this is not the case with SWATT.

Method Time of Execution (ms) Attack Overhead (ms) Attack Overhead (%)
Original SWATT 11061 - -

Original SWATT Attack - - 13 %
Our Shadow Attack 11879 818 7,4 %

SWATT 128 KBytes 13103 - -
Shadow Attack 128 KBytes 13956 852 6,51 %

Attack ROP (Hiding time) - 42,3 0,32 %

Figure 7: Timing of different attacks. The timings collected on SWATT with 128 KBytes were performed
with the same number of cycles that the original SWATT. On 128 KBytes the number of SWATT cycles
should be increased, according to the Coupon’s Collector Problem; we have not done it in order to have easily
comparable values.

of available peripherals10. We therefore cannot exclude the
existence of other implementations of a malicious checksum
computation function that would compute a valid checksum
without any noticeable delay.

4.1.2 Porting SWATT on MicaZ

SWATT was implemented for an early mica Berkeley mote,
based on an ATMega163L micro-controller which has 16
KBytes of program memory. The devices considered in this
paper are the most recent Mica2 and MicaZ sensors that use
an ATMega128L micro-controller [3] which has 128 KBytes
of program memory. Although the two micro-controllers
are very similar, using the original SWATT code on the
ATMega128L micro-controller would fail to check half of
the program memory. Running SWATT once for each half
of program memory would be fatal for the security of the
protocol as the attacker could copy its malicious code from
one half of the program memory to the other in a constant
time between the two checks.

Surprisingly, porting SWATT to the new device was not
straightforward and required a heavy redesign of the proto-
col. On the Atmega163L micro-controller the whole program
memory can be addressed with a 16 bit pointer (the Z pointer)
and a specific instruction “LPM” (Load from Program Mem-
ory). In SWATT this address is computed with one byte
generated from RC4 pseudo-random stream and an extra
byte specific to the SWATT algorithm. The 16 bit address
is sufficient to address 64 KBytes of program memory.

In order to check the whole program memory of an AT-
Mega128L micro-controller, we need to use another instruc-
tion, “ELPM” (Extended Load from Program Memory), that
can access the whole memory byte-wise. This instruction
uses the Z pointer plus another bit in a configuration register
(RAMPZ) in order to build the 17 bit address needed to
access the whole program memory. We implemented this
solution by using, at each step of the partially unrolled loop,
an extra random bit. As the unrolled loop contains 8 mem-
ory accesses, the extra random bit is provided by a spare
register loaded with one RC4 random byte. For each of the 8
memory accesses, our modified implementation uses one bit
of the spare register to compute the 17-th bit of the address.

Changes to the original SWATT protocol have a non-
negligible side effect. The main loop of the SWATT attes-
tation routine is extended by 4.8 cycles on average, while
the original attack [26] as well as the memory shadowing one
(Section 4.1.1) are possible in the same time. Therefore, the

10For example, AVR micro-controllers have powerful bit ma-
nipulation instructions and a DMA engine is present on the
MSP430 micro-controller used in Telosb motes.

overhead of the original attack is reduced from 13% to 10.7%
and the memory shadowing attack overhead is reduced from
7.4% to 6.5% (Figure 7).

We conclude that the security of SWATT relies on some
unique characteristic of the devices considered by the au-
thors to run their experiments. Porting SWATT on a new
device with a new instruction set or a different memory size,
dramatically changes the rules for both the attacker and the
verifier, which can undermine the security of the scheme.

4.1.3 Preventing the rootkit attack

In [26] the authors do not consider attestation of data mem-
ory as the AVR architecture does not allow to execute code
stored there. As seen in Section 3.1, an attacker could use
ROP to transfer malicious code between executable memory
and non-executable ones. To prevent such attacks there are
two possible approaches: attesting data memory, or having
SWATT clean data memory at the end of the attestation
protocol.

Data memory attestation.
Modifying SWATT to check data memory as well is non-

trivial and requires a deep redesign of the SWATT main loop.
One of the challenges is that program and data memory
are not accessed with the same instructions and are located
in different address spaces. A possible solution would be
to check the program memory and the data memory in
two consecutive steps. This would be risky as the attacker
could move malicious data/instructions right between the
two steps and avoid detection. Alternatively, SWATT could
be designed such that, at each iteration of the checksum
function one of the two memories is chosen at random and
then a random word is accessed within the selected memory.
However, accessing one out of two memories per iteration
would let the attacker insert its malicious instructions in a
branch executed every two memory loads, on average. As
a result, the overhead of an attack such as the memory
shadowing one (Section 4.1.1), would be divided by two, i.e.,
the malicious instructions would be executed half of the time.
Therefore, both memories must be attested at the same time
to guarantee the trustworthiness of the device.

Lastly, it is important to consider that the data address
space contains different regions (registers, I/O space and
Data sections) that might not be included in the checksum
computation because their values are unpredictable to the
verifier.

�����

������

	

�
��
��
�

�
�
�

������

��	 �����

�
�

�

�
�
�

�
�
�

������ ������ ������

���� ���� ���� ���� ���� ���� ���� ����

��������

���
��

Figure 8: While the legitimate ICE routine is stored
at address 0x9100, a malicious copy of the routine
is stored at address 0x1100. These two addresses
differ only in their most significant bit allowing the
attacker to run the malicious copy of ICE and still
pass attestation.

Enforcing memory cleanup.
SWATT can enforce memory cleanup at the end of the

attestation protocol, by erasing the whole data memory and
rebooting the device without performing any function return.

The verifier has a copy of the original code on the device,
so it can check if checksum computation has been performed
without returning. Not executing a return instruction would
prevent the attack presented in Section 3.1, but not the
shadowing attack showed in Section 4.1.1.

4.2 ICE-based attestation schemes
Indisputable Code Execution (ICE) based protocols (such

as, SCUBA [23], SAKE [22] and Message-in-a-bottle [19])
are a class of protocols that use the ICE routine to perform
attestation. The ICE routine is a self-checksumming rou-
tine used to bootstrap trust on a remote device. The self
checksumming code is based on a class of functions, called
T-functions [17], used to generate a random permutation of
memory locations. For each memory location traversed, a
160 bit checksum value C composed of ten 16 bit registers
Cj (C = [C0, ..., C9]) is updated as follows:

Cj = Cj−1 + PC ⊕mem[current address]

+j ⊕ Cj−1 + x⊕ current address + Cj−2 ⊕ SR

where PC is the program counter, x is the last value re-
turned by the T-function, j is a loop counter, SR is the
status register, + denotes the addition of two 16 bit words
without carry and ⊕ is the 16 bit exclusive or operation.
The program counter and the status register are included
to prevent a wide range of attacks detailed in the original
paper. To optimize the computations, these values are mixed
together only using bit-wise exclusive or operation and addi-
tion, two functions that provide poor diffusion of the input
bits.

As explained earlier, some micro-controllers do not make
the current program counter directly accessible to software.
Unlike other protocols reviewed in this paper, ICE has
been originally proposed for TelosB devices based on an
MSP430 [31] micro-controller with a Von Neumann memory
architecture. On the MSP430 the program counter is directly
accessible as a special register.

Our attack aims at altering two input values, such that
these two alterations would cancel out and therefore lead to
a correct checksum. This could be accomplished flipping the
most significant bit (MSB) of, for example, the PC and of the
status register. Altering the MSB is the best choice because,

since additions discard the carry, a change of this bit does
not propagate to other bits. Another possibility to obtain the
same result is to flip the MSB of the PC register (i.e. running
a copy of ICE at a different address) and the MSB of every
memory value accessed by ICE (i.e. mem[current address]).

Alteration to the PC leads to the attack depicted in Fig-
ure 8. It allows to store a copy of the ICE routine at a
different position than it was intended to, violating one of
the main security property that ICE is expected to guarantee.
This specific property is crucial for several protocols that rely
on ICE, as they assume that after its execution, ICE will
hand execution to an attested part of the code. Because the
displaced copy of the ICE routine is not modified, it runs in
exactly the same time as the original one and computes the
correct checksum. Therefore, it passes the attestation and it
is able to hand over execution to any code of its choice.

5. CONCLUSION
This paper investigated the security of existing software-

based device attestation protocols.
Software based attestation on general purpose operating

systems [16] has been previously shown to have serious weak-
nesses [29]. To our knowledge this paper presents the first
security analysis of software based attestation schemes specif-
ically designed for low-end embedded systems.

We presented two generic attacks on software code attesta-
tion. We also designed and implemented new specific attacks
(and discussed possible fixes) against existing software attes-
tation techniques, namely SWATT and ICE.

From our experience, we can conclude that secure time-
based attestation schemes are very difficult, if not impossible,
to design correctly. Time-based attestation schemes must
rely on very tight timing bounds. Their implementation must
therefore be small, simple and time-optimized. Those prop-
erties rule out cryptographic functions as they are complex
and time consuming. Design choices are then restricted to
ad-hoc functions (usually based on permutations or bit-wise
exclusive or operations) which very often provide only weak
security. In fact, one of our attacks partially leverages on a
weakness of the functions used for checksum computation.
Moreover, speed requirements force implementation in assem-
bly language, which is a very error-prone process. We also
stress that attesting only the code memory, as performed by
existing schemes, is not sufficient. As shown by our rootkit
attack, an attacker can still hide malicious code using Return-
Oriented Programming. We argue that all memories (RAM,
ROM, EEPROM) have to be attested. Designing an attesta-
tion scheme that involves all the memories of the end device
is quite challenging. Our future work will be to investigate
the feasibility of a software-based attestation protocol that
can guarantee security while being efficient and portable
across different architectures.

ACKNOWLEDGMENTS

The authors would like to thank Karim El Defrawy for his
helpful feedback and editorial suggestions as well as our
shepherd Rob Johnson and the anonymous reviewers for
their insightful comments and help to improve this article.
The work presented in this paper was supported in part by
the European Commission within the STREP WSAN4CIP
project. The views and conclusions contained herein are those
of the authors and should not be interpreted as representing

the official policies or endorsement of the WSAN4CIP project
or the European Commission.

6. REFERENCES
[1] Abadi, M., Budiu, M., Erlingsson, U., and

Ligatti, J. Control-flow integrity. In CCS ’05:
Proceedings of the 12th ACM conference on Computer
and Communications Security (2005), ACM.

[2] Anderson, R., and Kuhn, M. Tamper resistance - a
cautionary note. In In Proceedings of the Second Usenix
Workshop on Electronic Commerce (1996).

[3] Atmel Corporation. Atmega128 datasheet.
http://www.atmel.com/atmel/acrobat/doc2467.pdf.

[4] Buchanan, E., Roemer, R., Shacham, H., and

Savage, S. When good instructions go bad:
generalizing return-oriented programming to RISC. In
Proceedings of CCS ’08 (2008), ACM.

[5] Choi, Y.-G., Kang, J., and Nyang, D. Proactive
code verification protocol in wireless sensor network. In
ICCSA (2007), O. Gervasi and M. L. Gavrilova, Eds.,
vol. 4706 of Lecture Notes in Computer Science,
Springer.

[6] Cooprider, N., Archer, W., Eide, E., Gay, D.,

and Regehr, J. Efficient memory safety for TinyOS.
In SenSys ’07 (2007), ACM.

[7] England, P., Lampson, B., Manferdelli, J.,

Peinado, M., and Willman, B. A trusted open
platform. Computer 36, 7 (2003).

[8] Ferguson, C., Gu, Q., and Shi, H. Self-healing
control flow protection in sensor applications. In WiSec
’09 (2009), ACM.

[9] Francillon, A., and Castelluccia, C. Code
injection attacks on Harvard-architecture devices. In
ACM Conference on Computer and Communications
Security (2008), P. Ning, P. F. Syverson, and S. Jha,
Eds., ACM.

[10] Goodspeed, T. Exploiting wireless sensor networks
over 802.15.4. In Texas Instruments Developper
Conference (2008).

[11] Gu, Q., and Noorani, R. Towards self-propagate
mal-packets in sensor networks. In WiSec (2008), ACM.

[12] Hoglund, G., and Butler, J. Rootkits : Subverting
the Windows Kernel. Addison-Wesley, 2005.

[13] Hu, W., Corke, P., Shih, W. C., and Overs, L.

secfleck: A public key technology platform for wireless
sensor networks. In EWSN (2009), vol. 5432 of Lecture
Notes in Computer Science, Springer.

[14] Huffman, D.A. A method for the constructionof
minimum redundancy codes. Proceedings of the IRE 40
(1962).

[15] Hund, R., Holz, T., and Freiling, F. C.

Return-oriented rootkits: Bypassing kernel code
integrity protection mechanisms. In Proceedings of the
18th USENIX Security Symposium (August 2009).

[16] Kennell, R., and Jamieson, L. H. Establishing the
genuinity of remote computer systems. In SSYM’03:
Proceedings of the 12th conference on USENIX Security
Symposium (Berkeley, CA, USA, 2003), USENIX
Association, pp. 21–21.

[17] Klimov, A., and Shamir, A. New cryptographic
primitives based on multiword t-functions. In Fast

Software Encryption, 11th International Workshop,
FSE 2004 (2004).

[18] Krahmer, S. x86-64 buffer overflow exploits and the
borrowed code chunks exploitation technique. Tech.
rep., suse, September 2005. available at
http://www.suse.de/ krahmer/no-nx.pdf.

[19] Kuo, C., Luk, M., Negi, R., and Perrig, A.

Message-in-a-bottle: user-friendly and secure key
deployment for sensor nodes. In SenSys ’07:
Proceedings of the 5th international conference on
Embedded networked sensor systems (2007), ACM.

[20] Nergal. The advanced return-into-lib(c) exploits (pax
case study). Phrack Magazine 58, 4 (2001).
http://www.phrack.org/issues.html?issue=58&id=4.

[21] Park, T., and Shin, K. G. Soft tamper-proofing via
program integrity verification in wireless sensor
networks. IEEE Trans. Mob. Comput. 4, 3 (2005).

[22] Seshadri, A., Luk, M., and Perrig, A. SAKE:
Software attestation for key establishment in sensor
networks. In DCOSS ’08: Proceedings of the 4th IEEE
international conference on Distributed Computing in
Sensor Systems (2008).

[23] Seshadri, A., Luk, M., Perrig, A., van Doorn, L.,

and Khosla, P. SCUBA: Secure code update by
attestation in sensor networks. In WiSe ’06:
Proceedings of the 5th ACM workshop on Wireless
security (2006), ACM.

[24] Seshadri, A., Luk, M., Shi, E., Perrig, A., van

Doorn, L., and Khosla, P. Pioneer: verifying code
integrity and enforcing untampered code execution on
legacy systems. In SOSP ’05: Proceedings of the
twentieth ACM symposium on Operating systems
principles (2005), ACM.

[25] Seshadri, A., Perrig, A., van Doorn, L., and

Khosla, P. Using SWATT for verifying embedded
systems in cars. In Proceedings of Embedded Security in
Cars Workshop (ESCAR 2004) (Nov. 2004).

[26] Seshadri, A., Perrig, A., van Doorn, L., and

Khosla, P. K. SWATT: SoftWare-based ATTestation
for embedded devices. In IEEE Symposium on Security
and Privacy (2004), IEEE Computer Society.

[27] Shacham, H. The geometry of innocent flesh on the
bone: Return-into-libc without function calls (on the
x86). In Proceedings of CCS 2007 (2007), ACM.

[28] Shaneck, M., Mahadevan, K., Kher, V., and Kim,

Y. Remote software-based attestation for wireless
sensors. In ESAS (2005).

[29] Shankar, U., Chew, M., and Tygar, J. D. Side
effects are not sufficient to authenticate software. In
Proceedings of the 13th USENIX Security Symposium
(August 2004).

[30] Solar Designer. return-to-libc attack. Bugtraq
mailing list, August 1997.

[31] Texas Instruments. Msp430 f1611 datasheet.

[32] Yang, X., Cooprider, N., and Regehr, J.

Eliminating the call stack to save ram. In To appear in
LCTES 2009 (June 2009), ACM.

[33] Yang, Y., Wang, X., Zhu, S., and Cao, G.

Distributed software-based attestation for node
compromise detection in sensor networks. In SRDS
(2007), IEEE Computer Society.

APPENDIX

A. MODIFIED SWATT IMPLEMENTATION AND ATTACK

Generate ith member of random sequence using RC4 cycles
initialize high byte of array address zh ← 2 ldi r31, 0x02 1

i + + and R15 <= S[i] r15 ← *(x++) ld r15, x+ 2
j = j + S[i] yl ← yl + r15 add r28, r15 1

(R30 <= S[j]) zl ← *y ld r30, y 2
swap(S[i], S[j]) *y ← r15 st y, r15 2

*x ← zl st x, r30 2
tmp = S[i] + S[j] index to read from zl ← zl + r15 add r30, r15 1
RC4i = S[tmp] RC4 value, saved to zh zh ← *z ld r31, z 2

Generate 16-bit memory address
Z = Zh|Zl = RC4i|Ck−1 Ai <=> Z zl ← r6 mov r30, r6 1

Load byte from memory and compute transformation
R0 = Mem[Ai] r0 ← *z lpm r0, z 3
R0 = R0⊕ Ck−2 Ck−2 <=> R13 r0 ← r0 ⊕ r13 xor r0, r13 1
R0 = R0 + RC4i−1 RC4i−1 <=> R4 r0 ← r0 + r4 add r0, r4 1

Incorporate output of transformation into checksum
Ck = Ck + R0 r7 ← r7 + r0 add r7, r0 1
Ck = rot(Ck) r7 ← r7 ≪ 1 lsl r7 1

r7 ← r7 + carry bit adc r7, r5 1
r4 ← zh mov r4, r31 1

total cycles 23

Figure 9: Original SWATT implementation on AVR micro-controller. In the original
paper, at the 6th line the instruction is st x, r16. r16 is never affected and r30 holds the
value to swap.

Generate ith member of random sequence using RC4 cycles
initialize high byte of array address zh ← 2 ldi r31, 0x02 1

i + + and R15 <= S[i] r15 ← *(x++) ld r15, x+ 2
j = j + S[i] yl ← yl + r15 add yl, r15 1

(R30 <= S[j]) zl ← *y ld r30, y 2
swap(S[i], S[j]) *y ← r15 st y, r15 2

*x ← zl st x,r30 2
tmp = S[i] + S[j] index to read from zl ← zl + r15 add r30, r15 1
RC4i = S[tmp] RC4 value, saved to zh zh ← *z ld r31, z 2

Generate 16-bit memory address
Z = Zh|Zl = RC4i|Ck−1 Ai <=> Z zl ← r6 mov r30, r6 1

add r4 now (previous memory address)
Ck = Ck + RC4i−1 r7 ← r7 + r4 add r7, r4 1

backup the r31 to r4 before modifying it
r4 ← zh mov r4, r31 1

mangle two high bits of memory address
skip next instr. if address starts with 0 sbci r31,7 ¯

2
clear bit 6 of Zh cbr r31, 64

Load byte from memory and compute transformation
R0 = Mem[Ai] r0 ← *z lpm r0, z 3
R0 = R0⊕ Ck−2 Ck−2 <=> R13 r0 ← r0 ⊕ r13 xor r0, r13 1

Incorporate output of transformation into checksum
Ck = Ck + R0 r7 ← r7 + r0 add r7, r0 1
Ck = rot(Ck) r7 ← r7 ≪ 1 lsl r7 1

r7 ← r7 + carry bit adc r7, r5 1
total cycles 25

Figure 10: Malicious implementation of SWATT on a AVR micro-controller; main
loop is 2 cycles longer. This is possible because commutative operators are used in the
checksum computation (operator and and exclusive or).

