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Abstract. In this paper we investigate the way cyber-criminals abuse
public cloud services to host part of their malicious infrastructures, in-
cluding exploit servers to distribute malware, C&C servers to manage
infected terminals, redirectors to increase anonymity, and drop zones to
host stolen data.
We conduct a large scale analysis of all the malware samples submit-
ted to the Anubis malware analysis system between 2008 and 2014. For
each sample, we extracted and analyzed all malware interactions with
Amazon EC2, a major public cloud service provider, in order to better
understand the malicious activities that involve public cloud services.
In our experiments, we distinguish between benign cloud services that
are passively used by malware (such as file sharing, URL shortening,
and pay-per-install services), and other dedicated machines that play a
key role in the malware infrastructure. Our results reveal that cyber-
criminals sustain long-lived operations through the use of public cloud
resources, either as a redundant or a major component of their malware
infrastructures. We also observe that the number of malicious and ded-
icated cloud-based domains has increased almost 4 times between 2010
and 2013. To understand the reasons behind this trend, we also present a
detailed analysis using public DNS records. For instance, we observe that
certain dedicated malicious domains hosted on the cloud remain active
for an average of 110 days since they are first observed in the wild.

1 Introduction

Public infrastructure-as-a-service (IaaS) clouds have rapidly expanded in the
recent years, with almost half of US businesses now using cloud computing in
some capacity [10]. IaaS offer a straightforward pay-as-you-go pricing model
where users dynamically create virtual machines at will, provide them with pub-
lic IP addresses and on-demand compute and storage resources, and then delete
them without any sustainable cost. Major providers of IaaS clouds, such as Ama-
zon EC2 [2] and Microsoft Azure [4], also propose scalable services and default
configuration options that contributed to the wide adoption of cloud services.

Unfortunately, the rapid growth of cloud services has also attracted cyber-
criminals, paving the way to an active underground economy. As a result, Los et



al. [17] list the abuse of cloud services among the top nine critical threats to cloud
computing. In fact, public IaaS clouds provide users with virtually unlimited net-
work, compute, and storage resources. These are coupled with weak registration
processes that facilitate anonymity, and so anyone with a valid credit card can
easily register and use cloud services. For example, an early case of cloud ser-
vice abuse was publicly uncovered in 2009, where a Zeus command and control
(C&C) server was found to be hosted on Amazon EC2 [11]. More recent examples
include the SpyEye banking trojan that was found to be using Amazon S3 stor-
age [7], Android malware that exploited the Google Cloud Message service [21],
and more advanced persistent attacks that used Dropbox and Wordpress services
as a cover [14]. Despite these multiple examples, we are unaware of any existing
study that measures the extent at which public cloud services are being abused
by cyber-criminals. Such study would advise the design and implementation of
future cloud monitoring and accountability services. More precisely, we do not
know if cyber-criminals use cloud-based servers only as redundant components
of their malware infrastructure, or whether they specifically use cloud services
to achieve a better sustainability. Besides, we do not know if public clouds add
more resilience to malware infrastructures, what is the time it takes to detect a
malicious server hosted on a public cloud, as well as the time required to take
down this server after it was first discovered.

In this paper we present a framework to measure and analyze malicious activ-
ity that involves public cloud services. Unlike previous work that actively probed
public cloud IP addresses [22] or only use passive DNS records [13], we directly
collect malware communications by analyzing the network traffic recorded by the
Anubis dynamic analysis system [6]. Anubis is a publicly accessible service that
analyzes malware samples in an instrumented sandbox. As part of its analysis,
the system also records which domains and IP addresses are contacted by each
malware sample, and part of the data that is transferred through the connection.
Unfortunately, malware can communicate with the cloud for multiple reasons,
including malicious activities but also other innocuous connections which range
from simple connectivity checks, to the use of public benign services. This greatly
complicated the analysis, and required the development of several heuristics to
discard malware samples using public services hosted on the cloud, as this cannot
be considered an abuse of the cloud itself.

In our experiments, we analyzed the network communication of over 30 mil-
lion samples, submitted between 2008 and 2014. Our system identified 1.08 mil-
lion (roughly 3.6%) that connected to at least one publicly routable Amazon
EC2 IP address. These IPs were associated to 12,522 distinct cloud-based do-
mains. Interestingly, we observed that over the same period, only 32, 225 samples
connected to Microsoft Azure. Due to the relatively low number of samples that
interacted with Azure, we only focused our study on Amazon EC2.

To summarize, the paper makes the following contributions:

– We present the first systematic, large scale study on the use of public cloud
services by malicious software.



– We perform a precise categorization of each cloud access, separating the
cases in which the malware samples simply rely on legitimate services which
happen to be hosted on the cloud, from the cases in which part of the malware
infrastructure is hosted on the cloud.

– We study the evolution of cloud adoption over the past six years, and identify
an increasing trend that affects many different categories of malware.

– We present some general observations and insights about the global picture.
For instance, while the recent efforts towards enhancing malware detection
capabilities have contributed to considerably reduce the detection time for
malicious hosts and domains, we were unable to observe a similar effect in
the domains pointing to machines hosted on the cloud.

The rest of the paper is structured as follows. Section 2 provides an overview
of our approach. We then describe our experiments in Section 3, and summarize
and discuss the major findings in Section 4. Finally, Section 5 presented an
overview of the related work in the area and Section 6 concludes the paper.

2 Approach

To identify malicious servers hosted on Amazon EC2, we first collected the range
of IP addresses assigned to the cloud images, as reported by the Amazon web-
site 3. Moreover, to account for possible yearly changes, we also retrieved previ-
ous versions of the page from the web archive project 4. We then extracted and
analyzed the network traffic generated by all the malicious samples that have
been collected and executed in Anubis, a popular malware analysis sandbox [6],
over the past six years.

The main goal of our study is to verify the way miscreants make use of cloud
services, whether they specifically target cloud infrastructures, and measure the
time it takes for the provider to detect and drop malicious services hosted on
EC2. To do so, our system tracks all domain names associated with the EC2
IP addresses that were contacted at least once by a malicious sample. Then,
it further extracts and analyzes the DNS features and the content of network
communications between the malware and the EC2 machines.

A major challenge in our study is that domain names extracted from the Anu-
bis database do not only include dedicated malicious servers, and so we cannot
simply mark as suspicious every connection toward a cloud-based IP address. In
fact malware often contacts other public and benign cloud-based services, such
as IP lookup services, advertisement websites, and URL shortening. These ser-
vices are not part of the malicious activity and therefore need to be identified
and discarded from our subsequent analysis.

On the other hand, real malicious domains may have been sinkholed by secu-
rity organizations at the time the malware was analyzed in Anubis. Malware will
be thus redirected towards sinkhole services that are sometimes hosted on EC2,

3 http://docs.aws.amazon.com/general/latest/gr/aws-ip-ranges.html
4 https://archive.org/web/

http://docs.aws.amazon.com/general/latest/gr/aws-ip-ranges.html
https://archive.org/web/
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Fig. 1: Architecture of our platform

even though the original domains may have not been hosted on the cloud. Our
system filters these cases and does not consider them as cloud-related malicious
activities. Finally, in our experiments we discovered that many malware samples
were adwares that leverage pay-per-install (PPI) services hosted on Amazon or
other cloud providers. PPI services allow software publishers to pay affiliates by
the number of installations that they perform on target machines. Caballero et
al. analyze in [8] the modus-operandi of PPI services and measure their use for
malware distribution. Although the use of PPI services to distribute malware
still constitutes a malicious activity, PPI services are not malicious per-se, and
so they need to be discarded from our dataset as we only focus in this paper on
dedicated malicious services that were hosted on EC2.

2.1 Platform Description

To setup our experiments, we designed and implemented the platform illustrated
in Figure 1. Our system consists of two main components: the samples selection
and the feature analysis modules. The first extracts from the Anubis database
all malware samples that exhibited at least one network connection towards the
Amazon cloud. During the period of our study, we identified 1.08 million mal-
ware samples that satisfied this criterion. The samples selection module further
discards samples that have contacted benign public services hosted on EC2, and
keeps only dedicated malicious services as input to the feature analysis module.
Finally, the feature analysis module classifies the remaining malware samples
and analyzes their dedicated malicious services hosted on cloud.

Samples Selection. The samples selection module aims at building a database
of malware samples that, during their analysis, connected to malicious services
hosted on EC2 – as well as the domain names or IP addresses that were associated
with these services.

Malware Scanner: this module first extracts from Anubis all malicious samples
that interacted with EC2 machines. We seed this module with the list of publicly
routable IP ranges that were associated to the Amazon cloud in the year in which
the analysis was performed. During the six years of our study, we identified
1, 079, 318 distinct samples that connected to EC2.

The first thing we noticed in our experiments is that a large number of
samples in our dataset were executables that leveraged pay-per-install (PPI)



PPI Domain name Samples PPI Domain name Samples
getapplicationmy.info 116306 torntv.net 16578
sslsecure1.com 71965 powerpackdl.com 15586
oi-imp1.com 68255 oi-config3.com 15578
secdls.com 52857 webfilescdn.com 14050
oi-config1.com 43526 torntvz.com 12440
ppdserver.com 39434 premiuminstaller.com 11879
optimum-installer.com 38777 ppdistro.us 10463
optimuminstaller.com 35510 bestringtonesmaker.com 10136
leadboltapps.net 31918 baixakialtcdn2.com 9946
xtrdlapi.com 18615 oi-config2.com 9601

Table 1: Top 20 PPI services in our dataset

services hosted on EC2. PPI services have recently emerged as a key component
of modern cybercrime and miscreants often refer to these services to outsource
the global distribution of their malware. They supply PPI services with malware
executables, which in turn charge them for successful installations based on
the requested features for the desired victims. PPI service providers operate
directly or through affiliate programs. They develop downloaders that retrieve
and run the requested software (possibly malware) upon execution on the victim
computer.

To identify PPI downloaders in our dataset, we refer to multiple public
sources such as PPI forums [1] and public PPI web sites. The main challenge
in our case was to identify the different PPI brands, since there are new brands
that constantly appear over time. In order to address this challenge, we ana-
lyzed the public PPI services that were mostly contacted by the samples in our
dataset, and we tried to infiltrate these services by supplying a small program we
developed for distribution. By testing and manually reverse engineering the re-
sulting installer we developed a set of 13 distinct network signatures that match
the download URLs associated with different families of PPI services. By using
these signatures on the malware traffic we could further discard their associ-
ated samples in our dataset. As illustrated in Figure 2, we were able to discard
1, 003, 289 PPI downloaders, which corresponds to up to 93.2% of our initial
dataset. Table 1 summarizes the top 20 PPI domain names that were contacted
by malware in our dataset and the number of samples that were associated with
each service.

In addition to PPI downloaders, our dataset also includes benign files that
were submitted for analysis in Anubis. In fact Anubis is a public service where
Internet users freely submit suspect files for analysis. These files may turn out
to be benign files that connect to benign cloud-based services and so they also
need to be discarded from our dataset as they do not belong to the malware
category. Since our dataset covers a period where the most recent samples are
few months old, we use anti-virus (AV) signatures to identify and discard benign



Fig. 2: Composition of our malware dataset

samples. We refer to public services such as VirusTotal5 to scan our dataset,
and we consider as benign files all samples that are detected by less than five
AV editors. Our dataset finally includes 45, 422 confirmed malicious malware
samples. The remaining 30, 607 samples (2.83% of the initial malware dataset)
were discarded as we do not have enough confidence about the malicious nature
of these files.

Domain Filter: The domain filter module further discards from our dataset all
domains that are associated with benign cloud-based services. Although these
domains supply public Internet services that can be used by malware, they are
not part of dedicated malicious services. Out of the initial set of 12, 522 distinct
EC2-based domain names or IP addresses, the malware scanner discarded 8, 619
associated to PPI services or that were also contacted by benign programs.
The domain filter classifies the remaining 3, 903 domains into four categories, as
illustrated in Table 2.

The first category includes public benign services that were contacted by
malware. We found multiple examples in this category, including public IP re-
solvers (e.g. hostip.info), advertising and affiliate services, file sharing (e.g.
dropbox), URL shortening (e.g. notlong.com), and multiple other free services
(e.g. about.me, spring.me). To identify known public services in our dataset,
the domain filter leverages multiple sources such as the Alexa list of top do-
mains, public repositories that provide URL shortening services (e.g. bit.do)
and file sharing6. We also refer to AV labels in VirusTotal in order to identify
generic adwares. The domain filter module identifies as advertisement services
all domains that were only contacted by Adwares samples. To be conservative,
these domains were classified by our system into the public services category.

5 http://www.virustotal.com
6 http://online-file-sharing-services-review.toptenreviews.com/

http://www.virustotal.com
http://online-file-sharing-services-review.toptenreviews.com/


Service Domain Names Malware Samples

Public Services

Advertising 930 22,216
File sharing 796 7,657
Domain redirection 270 479
Others 211 1,723

Sinkholed 26 4,249

Infected 22 231

Dedicated
1,648 7,884
N/A 983

Total 3,903 45,422

Table 2: EC2-based service categories

The second category includes domain names that have been sinkholed, and
so they were redirected to sinkhole destinations that are hosted on the cloud.
EC2 hosts multiple sinkhole destinations that are used to subvert BOT commu-
nications with their remote C&C domains. These domains were not originally
hosted on EC2, and so they need to be discarded from our dataset. We leverage
the X-sinkole HTTP header7 in order to identify sinkhole destinations in our
dataset.

The last two categories include both dedicated malware domains and do-
mains that were once infected and temporarily used as part of the malicious
infrastructure. The separation between these two categories is more difficult and
more prone to errors. Our system relies on multiple empirical observations in
order to discriminate between the two cases. First, we assume that dedicated
malware machines that were hosted on EC2 more than one year ago have all
been detected or abandoned at the time we run our experiments. We show in
Section 3 that this is a reasonable assumption, consistent with the average life-
time of dedicated malicious domains hosted on EC2. Based on this assumption,
the domain filter module actively probes all the domains and if the domain is
still in use and points to a populated web page, we classify it as an infected
host. Unfortunately, domain name vendors often return a HTML page to sell
expired domains. Therefore, to correctly identify these domains, we parsed the
HTML response page using multiple keywords (e.g. ’domain expired’, ’domain
for sale’) and we removed these domains from the infected domains category.
On top of this first heuristic, we also leveraged the history of DNS requests to-
wards expired domains in order to assess the average lifetime of these domains.
We use for this purpose DNS records that we extracted from DNSDB, a passive
DNS duplication service8. In this case, our assumption is that infected domains
usually have a longer turnover than other dedicated malicious domains. In other
terms, infected domains are expected to appear in DNS records a long time be-

7 http://www.iss.net/security_center/reference/vuln/HTTP_Malware_

XSinkhole.htm
8 https://www.dnsdb.info/
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fore the associated malware first appears in the wild. Dedicated domains instead,
usually appear a short time before the malware is released and go offline a short
time after the malware has been detected. By combining these two heuristics we
were able to identify 22 infected services hosted on EC2 over the six years of
observation. The remaining 1, 648 domain names were identified by our system
as being associated with dedicated malicious services.

Most of the connections were initiated using a domain name, but 983 malware
samples directly connected to EC2-based IP addresses that were hard-coded in
the malware itself, without any prior DNS request. To summarize, 8, 867 of the
45, 422 samples used at least one dedicated server hosted on Amazon EC2. For
these, we also analyzed the content of their network communications. Almost
90.3% of these samples used the standard HTTP protocol (either GET, POST,
or HEAD methods). Few samples were IRC bots (19 distinct samples) and spam
bots (136 distinct samples) that connected to malicious IRC and SMTP servers
hosted on EC2. The remaining samples belonged to the Zeus version 3 and the
Sality peer to peer (P2P) malware families, and were using the UDP protocol
to connect to malicious P2P services hosted on EC2.

Feature Analysis. The analysis module processes the output dataset provided
by the feature extraction module in order to extract main trends. First, it clus-
ters malware families according to their antivirus labels, in order to figure out
whether there exists a general trend towards moving malware infrastructures
into the cloud, or whether this phenomenon is limited to some specific malware
families. Second, it analyzes the network activity of each malware sample, com-
puting the distribution of IP addresses and the domain flux to tell if miscreants
specifically target cloud services, or if they use these services as part of their
redundant malware infrastructure. Third, the feature analysis module observes
the average duration a dedicated malicious server remains publicly accessible
on the cloud. This can be used to estimate how effective are cloud providers
in detecting abuse of their services, and whether malware writers sustain long
lived malicious activities through the use of public cloud services. The following
section provides the details and the main results of our experiments.

3 Experiments

The dataset provided by the feature extraction module (as described in Table 2)
allows us to analyze both the malware families that are using EC2 cloud services
in some capacity, as well as the distribution and lifetime of malicious domains
that are hosted on EC2. Therefore, a first question that we would like to address
in this section is whether the use of public cloud services is still limited to a small
set of malware families, or whether it can be generalized to different families of
malware. A straightforward approach to answer this question is to analyze the
8, 867 distinct malware samples that we found to be connecting to dedicated
malicious EC2 machines.



AV label # samples AV label # samples
Downloader Fosniw 1249 Trojan Kryptik 160
Worm Vobfus 909 Ramnit 129
Android DroidAp/SmsSend 634 Downloader Banload/Zlob 128
Downloader Murlo/Renos 567 Trojan Kazy 127
Backdoor QQRob 528 Downloader Virut/Virtob 127
Downloader Small BKY 208 Zbot 117
Delf Downloader 196 Malware SoftPulse 108
Trojan Injector 194 Downloader Karagany 90
Downloader 8CCBF09D99CF 186 Trojan Krap 89
Clicker Agent 172 Downloader Cutwail 80

Table 3: Top 20 malware family

Since our dataset includes malware samples that are at least few months old
at the time we run our analysis, we believe it is reasonable to use AV labels
as a reference to understand and classify our dataset. More complex behavioral
clustering mechanisms, as proposed for instance by Bayer et al. [5] and Perdisci
et al. [19], could be applied to refine the classification. However, since we only
need a broad understanding of the major malware families that use cloud services
and we can tolerate few misclassification errors, a simple AV-based solution is
better suited for our study.

It is well known that different AV vendors assign different labels for the same
malware sample. For example, the SpyEye malware can be identified by Kasper-
sky as Trojan-Spy.Win32.SpyEyes, and by McAfee as PWS-Zbot.gen.br. To
limit the impact of such inconsistencies, we applied a majority voting to assign
the labels to our dataset. In order to do so, we pre-process each label by splitting
it in multiple elementary keywords according to non-alphanumeric characters We
then discarded common prefixes such as W32, Mal and Trojan, as well as Generic
malware identifiers, such as Heur, Worm, Gen, and malware. To handle malware
aliases, we referred to multiple public sources such as the spywareremove web-
site9 to group together all aliases of a given malware family. For example, the
labels win32.spammy by Kaspersky and W32/Sality by McAfee were identified
as aliases for the same sality malware, and therefore grouped as part of the same
family.

Cloud-based Malware Families: We mainly focus in this paper on malware that
uses dedicated malicious services hosted on EC2. Therefore, we build clusters of
malware families for our dataset including 8, 867 distinct samples that belong to
this category. Using our approach, we are able to identify 377 distinct malware
families. As clearly illustrated in Table 3, which provides the list of top 20 mal-
ware families, we were not able to identify a predominant malware family that
uses dedicated malicious cloud services. More interestingly, our dataset includes

9 http://spywareremove.com/

http://spywareremove.com/


Oct 
2010

Apr 2
011

Oct 
2011

Apr 2
012

Oct 
2012

Apr 2
013

Oct 
2013

Apr 2
014

0

100

200

300

400

500

600

700

800

#
 s

a
m

p
le

s

# samples
% samples

0.0%

0.01%

0.02%

0.03%

0.04%

0.05%

%
 s

a
m

p
le

s

(a) Number and ratio of distinct malware
samples that connected to dedicated mali-
cious domains hosted on EC2

May 2010

Nov 2010

May 2011

Nov 2011

May 2012

Nov 2012

May 2013

Nov 2013

May 2014
0

10

20

30

40

50

60

70

80

#
 m

a
lw

a
re

 f
a
m

ili
e
s

# malware families
# domain names

0

50

100

150

200

250

#
 d

o
m

a
in

 n
a
m

e
s

(b) Number of distinct malware families
that used dedicated EC2-based malicious
services and number of their associated ma-
licious domain names

Fig. 3: Malware dataset analysis

malware that uses different topologies, including also decentralized peer-to-peer
networks such as the Sality malware. Clearly the use of dedicated malicious
cloud services is not limited to a small set of malware families, but it could be
generalized to all categories of malware.

Time Evolution: Since the hosting and usage of malicious services on public
cloud infrastructures such as EC2 is not limited to specific malware families, our
next goal is to identify if there is a clear trend on the amount of malicious software
that make use of cloud services. Figure 3a illustrates the number of distinct
samples that connected to dedicated malicious domains hosted on EC2 during
the period of our observation. To account for changes in the overall number of
submissions, the figure also shows the percentage of distinct samples compared to
the total number of samples submitted to Anubis in the same period. Figure 3b
shows instead the number of distinct malware families, and the number of their
associated malicious domains that were found to be hosted on EC2 over the
same period.

On average, the number of malware that uses dedicated cloud-based mali-
cious services has grown by almost 4 times between 2010 and 2013. The overall
trend also includes multiple peaks, that after a manual analysis resulted to be
associated with multiple instances of malicious servers found to be temporarily
hosted on Amazon EC2. While the fast growing number of malware samples
that use cloud-based services may appear as a natural consequence of the gen-
eral increase in the number of malware attacks [3], Figure 3a shows that this is
not the case and that the ratio between these malware samples and the total
number of malware submitted to Anubis has been increasing at the same rate.
As illustrated in Figure 3b, this trend can be generalized to all malware families,
which means there is a growing appetite towards using cloud infrastructures to
host malicious servers. This could be due to multiple elements, including the fact
that cloud services have been rapidly expanding in the past few years, and the



fact that they are ease to access and still lack a strict accountability and control
over their hosted machines [15].

3.1 Role of Public Cloud Services in Malware Infrastructures

In this section we describe the different ways malicious software makes use of
public cloud services. In particular, we are interested in understanding whether
miscreants specifically target cloud services or whether they use these services
as small parts in a much larger redundant infrastructure.

For this purpose, we measured the ratio of remote malicious destinations that
were hosted on EC2, compared to all malicious destinations contacted by the
malware during the analysis. Then, for those malicious services that were hosted
on EC2, we determined if they were hosted on EC2 only as part of a redundant
mechanism. In this case, we extracted the DNS requests executed by the malware
and we monitored the DNS records history using DNSDB service in order to
compute the ratio of IP addresses that belong to the EC2 IP range, compared to
all IP addresses associated with that malicious domain in other moment in time.
This technique works particularly well in the presence of round-robin DNS and
DNS fast-flux techniques that are often adopted by botnet herders. For instance,
miscreants can associate different IP addresses with the same malicious domain
name, where only some of these IPs may be hosted on EC2.

Figure 4 presents the average distribution of the ratio of remote malicious
destinations that were hosted on EC2, compared to all malicious destinations
contacted by all malware samples. We present our findings as a box plot where
malware samples are classified according to their submission date to Anubis. The
Y-axis characterizes the ratio of dedicated malicious domains that were hosted
on EC2, with respect to all malicious domains contacted by malware. Since we
included in this experiment only malware samples that used dedicated malicious
services on the Cloud, the percentage is always greater than 0%. On the other
hand, a malware would fit into the 100% category in case all dedicated malicious
domains that were contacted by the malware were strictly found to be hosted
on EC2.

As shown in Figure 4, miscreants mostly use public cloud services in order to
host only certain components of their malware infrastructures. Note that while
in 2010, and for malware that uses EC2 to host its dedicated malicious services,
only few components of its malware infrastructures were found to be hosted on
EC2 (less than 40% of remote malicious domains in average); the use of pub-
lic clouds to host dedicated malicious services has rapidly evolved in the recent
years, including malware samples that were found to be exclusively communi-
cating with dedicated cloud-based malicious domains in years 2013 and 2014.
In other terms, miscreants have been recently referring to public cloud services
in order to setup and manage their entire malware infrastructure. Therefore, al-
though the use of public cloud services is still limited to only specific components
of malware infrastructures, we observe an increasing appetite for miscreants to-
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wards using public cloud services to setup and manage additional components
of their malware infrastructures.

Since most miscreants refer to public cloud services to host only certain
components of their malware infrastructure, the second question we would like to
answer is whether they specifically refer to public cloud services for this purpose,
or whether they use these services as redundant or failover components. We
observed for this purpose the history of DNS records for all dedicated malicious
EC2-based domains in our dataset until they were blacklisted, then we identified
all IP addresses that were associated with these domains and their registrars
in the DNSDB service. The results of our investigation were compelling. Out
of the initial 1, 648 dedicated malicious EC2-based domains that constitute our
dataset, 1, 620 domains (almost 98.3% of our dataset) were exclusively associated
with IP addresses that belong to the EC2 IP range. Note that while 87.5% of
dedicated malicious domains were associated with only a single EC2-based IP
address, another 10.8% where found to be associated with multiple IP addresses
that all belong to the EC2 IP range. In other terms, miscreants were specifically
using public cloud infrastructures such as EC2 to host their dedicated malicious
services.

While the use of public cloud services to host dedicated malicious domains is
still limited to only certain components of today’s malware infrastructures, mis-
creants appear to be specifically targeting cloud infrastructures for this purpose,
and do not use public clouds only as redundant components of their malware
infrastructures.

3.2 Dedicated Domains Lifetime Estimation

In the last part of our study, we tried to estimate the average time that malicious
domains persist on EC2 cloud. Our approach leverages the lifetime of the EC2-
based malicious domains in order to estimate whether the use of public cloud
providers such as EC2 adds more resilience to malware infrastructures.



100 101 102 103 104

Number of days (log scale)

0.0

0.2

0.4

0.6

0.8

1.0

2010
2011
2012
2013
2014

(a) Time elapsed until a dedicated mali-
cious EC2-based domain was first observed
in Anubis

100 101 102 103 104

Number of days (log scale)

0.0

0.2

0.4

0.6

0.8

1.0

2010
2011
2012
2013
2014

(b) Time until a dedicated malicious do-
main was no longer hosted on EC2, after
it was observed in Anubis

Fig. 5: Lifetime of dedicated malicious EC2-based domains

In the following, we refer to the lifetime of a EC2-based malicious domain as
the duration when it was consecutively associated with EC2 cloud IP address in
the passive DNS records. Note that the use of passive DNS service only provides
an estimation of the real lifetime of these domains but this is an approximation
that is often used for this type of measurements [16]. Since domains first appear
in the passive DNS services when they are actively requested on the Internet,
we consider that the use of this service provides a reliable estimation of the
real duration in which a given domain remained active and accessible on the
wild. In this section, we observe only dedicated malicious domains that were
hosted on EC2, and that were contacted by our malware dataset collected over a
period that ends by June 2014. Hence, we only consider historical DNS records
associated with malicious servers that are no longer hosted on EC2 cloud at the
time of writing. Note that these domains may be still accessible but no longer
associated with any EC2 IP address.

We defined two metrics for our experiments. First of all, we measured the
time between the domain first appeared in the passive DNS service and the
time the malware was analyzed by Anubis. Second, we extract the time when
a dedicated malicious domain is no longer associated with an EC2 IP address,
after the malware was first submitted to the Anubis service.

The results of our experiment are summarized by the cumulative distributions
that are illustrated in Figure 5. The graphs separately illustrate the results of
our experiments for the last five years since 2010, in order to extrapolate some
trends and assess the efficiency of security measures implemented by Amazon
over time. The first graph shows that the distribution is clearly moving toward
the top-left corner, meaning that each domain was observed in Anubis soon
after it first appeared in the wild. For instance, while in 2011 around 50% of the
domains were already present in the passive DNS service (and therefore active in



Id Domain IP address First seen Last seen
Duration
(months)

1 09sp.co.tv 174.129.222.176 August 2010 October 2010 3
174.129.242.247 January 2011 November 2012 22

2 47gr.co.tv 174.129.222.176 July 2010 July 2010 1
174.129.242.247 February 2011 November 2012 21

3 dl.ka3ek.com 107.20.206.69 January 2013 November 2013 11
54.209.129.218 January 2014 January 2014 1

4 hightool.com 107.20.206.69 January 2013 December 2013 12
54.209.168.250 March 2014 September 2014 7
54.208.247.222 September 2014 September 2014 1

5 hzmksreiuojy.com 54.241.7.53 April 2013 April 2013 1
50.18.179.196 April 2013 October 2013 7
50.17.195.149 July 2014 July 2014 1

Table 4: Examples of domains that rotated their IP addresses on EC2 over time

the wild) for 100 days before some malware in Anubis contacted them, in 2014
they had only been active for two days. In other words, the security community
became very efficient to promptly detect, collect, and submit malware samples.

Unfortunately, Figure 5b shows that the time these domains were hosted
on EC2 after the malware was analyzed remained stable over the same period.
While many factors are involved in this process, this seems to suggest that Cloud
providers did not improve their ability to detect and report abusive behaviors. In
other words, our observations suggest that the security mechanisms implemented
by public cloud service providers have not contributed to reducing the lifetime
of malicious domains hosted by these providers.

In order to confirm these findings, and since cloud providers may take-down
malicious IPs and not their associated domain names, we analyzed the way
malicious EC2 domains resolve to different IP addresses over time. We wanted to
evaluate how long malicious machines remain active on EC2 before they are taken
down by the cloud provider, and so miscreants may be forced into migrating their
malicious domains towards other IP addresses. We monitored for this purpose
all DNS records in the DNSDB service, searching for different IP addresses that
were associated with every malicious domain in our dataset. Confirming our
hypothesis, we found multiple instances of malicious machines that remained
active on EC2 even for several months before they were migrated towards other
IP addresses in the cloud.

As illustrated by the examples in Table 4, the first two malicious domains
were associated with the same EC2 IP address for up to twenty consecutive
months before they went out from the EC2 IP ranges. Interestingly, certain
malicious domains, such as domains 1 and 2, as well as domains 3 and 4 in
Table 4, were associated with the same IP address during the same period of
time, which seems to indicate that miscreants may associate different domain



names with their malicious machines in the cloud in order to obtain a better
resilience against domain blacklisting. Moreover, they also seem to benefit from
the flexibility offered by the cloud in order to migrate towards new IP addresses in
EC2 as soon as their current IP addresses have disappeared from the active DNS
records, which may suggest that their malicious machines have been identified
and taken down by the cloud provider (EC2 in our study). In total, we observed
similar behaviors in over 240 malicious domains in our dataset.

4 Discussion

When we started our experiments, we were surprised to discover that over 3.5%
of the malware samples in our dataset exhibited at least one network connection
with a machine hosted on the Amazon cloud. However, as clearly depicted in
Figure 2, the vast majority of these connections had nothing to do with the fact
that criminals were intentionally using the Cloud as part of their infrastructure.
In fact, once PPI and other benign services were filtered out, we discovered that
less than 1% of the traffic toward Amazon involved a malicious EC2 machine.

Even though this number may seem incredibly small (roughly one every 3200
malicious samples), it is still relevant when scaled to the entire dataset containing
tens of millions of malicious samples. Moreover, our experiments show that the
use of public cloud services by malicious software has been increasing over the
last six years, despite the measures taken by certain cloud providers to limit the
extent of these abuses. It also seems that the use of dedicated malicious cloud
services is not limited to a small set of malware families, but it can be generalized
to most of the malware categories – as summarized by Table 3.

The final observation of our study is related to how the cloud providers,
Amazon in our case, respond to this threat. Even though we did not have a
direct way to observe their reaction, we were able to measure for how long –
after the malware was publicly known – the malicious domains it contacted were
resolving to IPs hosted on EC2. While the absolute value is not very important,
the fact that it remained constant over the past four years seems to indicate that
the cloud provider did not make any substantial improvement in detecting and
taking down malicious machines.

5 Related Work

Prior abuse cases of public cloud providers have attracted a lot of interests in
the recent years [7, 11, 14, 21]. For instance, cloud services are listed by Solu-
tionary [20] among the major components of modern cybercrime, and attackers
seem to use these services the same way and for the same reasons as legitimate
customers. Despite this popularity, we are aware of only few research studies
that managed to evaluate the real extent of this phenomenon.

Hamza et al. [12] presented a survey of possible techniques to abuse cloud
services in modern cybercrime. They provide interesting insights on the way
cyber-attacks are perpetrated from within cloud platforms, including examples



such as host hopping attacks and abuse of privileges. However, this survey only
focuses on strong attack signals, and does not consider other weak signals that
determine the way cloud services are being used as part of the attackers command
and control infrastructures.

In [18], Nappa et al. analyze drive-by download attacks and exploit servers
that are managed by the same organizations. They found that 60% of the ex-
ploit servers are hosted by public cloud service providers. More interestingly,
they evaluated the abuse report procedures implemented by public cloud service
providers. They realized that out of 19 abuse reports they have submitted, only
7 were investigated by cloud providers. Moreover, the authors computed that it
takes on average 4.3 days for a cloud provider to take down an exploit server
after it has been reported. It is important to note that the authors of this study
only focus on drive-by-download attacks that involve cloud services. Although
drive-by-download servers constitute a major component of a modern malware
infrastructures, we go beyond this unique use case in order to provide in this
paper a more comprehensive assessment about the way cloud services are being
integrated in malware infrastructures in modern cybercrime. We also try to un-
derstand whether clouds constitute core elements of the malware structure, or
whether they are only used as redundant or failover components.

In [9], Canali et al. propose an active approach to evaluate the security mech-
anisms implemented by web hosting providers. They installed vulnerable web
services on 22 distinct hosting providers, and triggered multiple attacks to lever-
age the reaction capabilities of these providers. To test the security mechanisms
implemented by cloud service providers we adopt a less intrusive approach where
we only observe malware interactions with the cloud. In our study we only focus
on Amazon EC2. While this choice may limit the extent of our observations, at
the same time eliminate as much as possible the impact of rogue or other host-
ing providers that do not guarantee minimal security SLA requirements to their
users. We believe that focusing only on the biggest cloud providers in terms of
market share also shed light on the limits of current security and accountability
mechanisms implemented by today’s cloud providers.

Finally, Wang et al. [22] propose a system that measures the churn rates in
EC2 and Azure in order to evaluate the efficacy of IP blacklists for malicious
activity in the cloud. The authors actively probed the EC2 and Azure IP ranges,
and proposed a clustering mechanism that groups together IP addresses imple-
menting the same services. They also observed all web services hosted by cloud
providers, spanning both benign and malicious activities. The results of their ex-
periments show only small amounts of malicious activity (mostly phishing and
malware hosting) by comparing data from their system with public blacklists.
We propose in this paper a complementary approach that observes only malware
interactions with the cloud in order to leverage the true extent of the malicious
activity hosted by public cloud providers.



6 Conclusion

Public cloud services have rapidly expanded in recent years, yet they have at-
tracted cyber criminals because of the wealth of resources they make available,
and the lack of accountability over the usage of these resources. In order to
measure the extent at which public cloud services are being abused by cyber-
criminals, we conducted a longitudinal study of malware in order to better un-
derstand the way it interacts with public cloud services.

In particular, in this paper we study several characteristics of the traffic ob-
served between malicious samples and the Amazon EC2 cloud. Based on our
measurements, we discuss the evolution of this phenomenon over the past six
years, and we present few key observations and insights into this growing prob-
lem.

We hope that our study can shed some light on a key component of the
modern cyber crime infrastructure, and would provide useful input to devise
appropriate mitigation strategies.
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