
Assessing the risk of using vulnerable
components

Davide Balzarotti†, Mattia Monga‡, and Sabrina Sicari?

†Politecnico di Milano
Dip. di Elettronica e

Informazione
Piazza Leonardo da

Vinci, 32
I 20133 Milan, Italy

‡Università degli Studi di
Milano

Dip. di Informatica e
Comunicazione

Via Comelico, 39
I 20135 Milan, Italy

?Università di Catania
Dip. di Ing. Informatica e
delle Telecomunicazioni
Viale Andrea Doria 6,
I-95125 Catania, Italy

Abstract. This paper discusses how information about the architec-
ture and the vulnerabilities affecting a distributed system can be used
to quantitatively assess the risk to which the system is exposed. Our
approach to risk evaluation can be used to assess how much one should
believe in system trustworthiness and to compare different solutions,
providing a tool for deciding if the additional cost of a more secure com-
ponent is worth to be afforded.

1 Introduction

The issue of software security is increasingly more relevant in a world where most
of our life depends directly on several complex computer-based systems. Today
Internet connects and enables a growing list of critical activities from which
people expect services and revenues. In other words, they trust these systems
to be able to provide data and elaborations with a degree of confidentiality,
integrity, and availability compatible with their needs. Unfortunately, this trust
is often not based on a rational assessment of the risk to which the system
could be exposed. Users tipically know only the interface of the system and,
for example, they have too little information for evaluating the confidentiality
of their credit card number: it could be even transmitted on an SSL armored
link, but this does not help if on the other side it will be stored on a publicly
available database! Surprisingly, the designers of the system are often in a similar
situation. In fact, software systems are increasingly assembled from components
that are developed by and purchased from third-parties and used as black boxes.
Web services, for example, give to software engineers the ability of building
complex applications by assembling third-parties components that expose a web
interface[7], an extreme case of components off the shelf (COTS) software.

Thus, black box components make clear that nobody has enough information
for evaluating how secure is every single computation. However, several public
services exist (for example, BugTraq[1]) that publish known vulnerabilities of
commercial components. The problem this paper wants to discuss is whatever
this information can be used to assess how secure is a system built by assembling

vulnerable components. In the following we propose a quantitative approach to
measuring risk based on the knowledge of:

– the vulnerabilities of components and links and a measure of their “ex-
ploitability”.

– the logical dependencies that the architecture of the system induces among
vulnerabilities, since it is often the case that a vulnerability can be exploited
more easily by leveraging on another one.

– the envisioned attacks against the system.

Risk evaluation can be used to assess how much one should believe in system
trustworthiness, but also– more interestingly– to compare different solutions. In
fact, designers have often the option of using different components and different
architectural choices. A quantitative risk assessment is key in providing a tool
for deciding if the additional cost of a more secure component is worth to be
afforded.

The paper is organized as follows: in Section 2 we describe our approach to
evaluate the risk associated with a given architecture, in Section 3 we present
an example of application, in Section 4 we discuss related work, and finally in
Section 5 we draw some conclusions and sketch future work.

2 Our approach to risk assessment

The goal of risk assessment is to determine the likelihood that identifiable threats
will harm, weighting their occurrence with the damage they may cause. An
ideal risk assessment requires enumeration of all possible failure modes, their
probability of happening and their consequences. Unfortunately, this information
is rarely available in its gory detail and, when it is, it is very difficult to analyze
it in order to draw sensible considerations.

We aim at both (1) reducing the complexity of risk analysis and (2) using
information that can be managed, discussed, and agreed by high-level designers
of a distributed system. For this reason we consider a distributed system as a
composition of black-box elements communicating through directed links. We
call architecture of the system the directed graph < C, L > in which C is the set
of all black-box components and L the set of all directed links. A link (c1, c2)
means that c1 may send input to c2.

Moreover, we consider each element ∈ (C ∪L) as vulnerable. A vulnerability
is a flaw or weakness in a system’s design, implementation, or operation and
management that could be exploited to violate the system’s security policy [10].
The RFC definition adds also that

“Most systems have vulnerabilities of some sort, but this does not mean
that the systems are too flawed to use. Not every threat results in an
attack, and not every attack succeeds. Success depends on the degree of
vulnerability, the strength of attacks, and the effectiveness of any coun-
termeasures in use. If the attacks needed to exploit a vulnerability are

very difficult to carry out, then the vulnerability may be tolerable. If the
perceived benefit to an attacker is small, then even an easily exploited
vulnerability may be tolerable. However, if the attacks are well under-
stood and easily made, and if the vulnerable system is employed by a
wide range of users, then it is likely that there will be enough benefit for
someone to make an attack.”

As stated by Howard and Le Blanc[11]: “You cannot build a secure system
until you understand your threats”. Therefore, in order to assess the trustwor-
thiness of a system (or, dually, its risks), one has to identify possible threats
and how attacks could be performed. Obviously enough, the risk of an unfore-
seen threat cannot be positively assessed and unknown attacks fall outside a
systematic analysis of risks. Similarly, in the following we consider only known
vulnerabilities, however it is possible to apply our approach even to unknown vul-
nerabilities (or a mix of known and unknown ones) if their nature is predicted.

Safety engineering has a long tradition of using fault trees or event trees to
analyze hazards in complex systems[15]. A similar approach it is commonly used
also in information technology. Attack trees[17, 6] provide a formal, methodical
way of describing how an attack can possibly be performed against a system. Ba-
sically, one represents attacks in a tree structure, with the goal as the root node
and different ways of achieving that goal as leaf nodes. There are and nodes and
or nodes. or nodes are alternatives; and nodes represent different steps toward
achieving the same goal. The ultimate objective in building an attack tree is
identifying how vulnerabilities can be exploited to harm a system, therefore the
basic leaves represent system vulnerabilities. However, these are often dependent
one on another, but this information is partially lost in attack tree representa-
tion. In fact, only structural dependencies are made explicit (i.e., the attack has
a given structure and implies the exploitations of some vulnerabilities), while
indirect dependencies (i.e., a vulnerability might ease an attack, even if the at-
tack is possible without its presence) are neglected. Therefore, we propose to
take into account all vulnerabilities dependencies and we devise an analytical
approach for computing the risk associated to a specific threat (described by an
attack tree) starting from the assessment of the exploitability of vulnerabilities.
Moreover, our analysis starts from the architecture of the system, since we found
that most (but not all) of the dependencies among vulnerabilities stem from the
basic topology of the system.

2.1 Measuring risk

Risk is measured by means of a function of two variables: one is the damage
potential of the hazard (H) and another one is the level of exploitability (E)
by which we consider the difficulty to make an attack. Damage potential can
be defined as the average loss of money an attack may cause, but any sensible
numerical measure can be used in our approach.

The meaning that we give to the term exploitability, E, is a general value
that includes both the exploitability and reproducibility of an attack, defined in

the STRIDE/DREAD theory[11]. At the same time we also attribute to damage
potential (H) the meaning of total damage taking into account also the number
of affected users.

Risk = f(H,E) (1)

We want to evaluate the total risk of a threat described by an attack tree.
Our approach consists of four steps:

– At step 1: A threat to the system under examination is modelled by using
an attack tree. The attack objective is the root node and children nodes
represent different ways of achieving it. Children can be alternative (or sub-
trees) or needed jointly (and subtree). The final leaves of the tree are po-
tential vulnerabilities of the system that should be matched with the actual
known vulnerabilities. To each vulnerability v is associated a numerical in-
dex E, called exploitability, which measures how probable is that v will be
exploited to perform a successful attack. Evaluation of E can be quite ap-
proximate: in order to apply our computation it is sufficient that the partial
order of indexes among dependent vulnerabilities (see below) reflects the
relative difficulty of exploitation. In fact, further calculation are based only
on maximum and minimum operations and no complex arithmetics will be
applied. However, to compare two different risk evaluations (possibly with
respect to two different systems), the same scale should be used and a total
order among exploitability indices is needed. A meaningful assessment of E
is a matter of both experience and ingenuity, but as far as a single analy-
sis is concerned only relative ease of exploitability has to be estimated, a
judgement on which people often agree.

– At step 2: We introduce dependencies among identified vulnerabilities. A
vulnerability A depends on a vulnerability B if and only if when B was
already exploited, then A is easier to be exploited. Dependencies should
be analyzed by taking into account context, architectural and topological
information.

– At step 3: The index E of each vulnerability is updated taking into account
mutual dependencies, according to the algorithm described in Section 2.2.
since each vulnerability could be exploited thanks to the previous exploitation
of one of the vulnerabilities on which it depends.

– At step 4: The risk associated to the threat under examination is finally
computed by recursively aggregating exploitabilities along the attack tree.
The exploitability of an or subtree is the easiest exploitability of children,
and the exploitability of an and subtree is the most difficult exploitability
of children. The aggregated exploitability measures the level of feasibility of
the attack and can be combined with the damage potential (H) to assess the
risk of the threat.

2.2 Exploitability of dependent vulnerabilities

Consider the system depicted in Figure 1. We will use this simple example
to show our approach to risk assessment. The system can be described as a

graph S =< C,L > where C = {P,Q,R} is the set of components and L =
{(P,Q), (Q, R), (R,Q), (R,P)} is the set of links between components. A num-
ber of flaws affecting the software composing the system is know: let’s them form
the set F = {p1, q1, q2, r1, x1, y1, z1, z2}. Components are exposed to the set of
vulnerabilities VC = {(P, p1), (Q, q1), (Q, q2)(R, r1)}, where an element (υ, ν)
means that the component υ is susceptible to be subverted thanks to the flaw
ν. Links are exposed to the set of vulnerabilities VL = {((P,Q), x1), ((Q,R),-
z1), ((Q,R), z2), ((R,Q), z1), ((R,Q), z2), ((R,P), y1)}, where an element (υ, ν)
means that the link υ is susceptible to be subverted thanks to the flaw ν.
The set of all vulnerabilities is V = VC ∪ VL. To ease notation, we denote
element(ν) ∈ C ∪ L the element of S to which the vulnerability ν applies.

ONMLHIJKP

X

����
��
��
��
�

ONMLHIJKQ Z
,,ONMLHIJKR

Y

__?????????

ll

Fig. 1. System architecture

Initially, one has to assess how easy and repeatable is to exploit every single
vulnerability to gain control of a component or a link in the given architecture.
We call this the exploitability E0(ν) of the vulnerability ν in the system S.

∀ν|(υ, ν) ∈ V assess E0(ν)

E : V 7→ N

where N is a total ordered set of degrees of exploitability; we will use N =
{x|0 ≤ x ≤ 10} where 0 means “not exploitable at all”. This evaluation will
be driven by the knowledge we have about the vulnerability itself and the con-
straints the architecture imposes on its exploitability. In fact, when a component
or a link is part of a complex system, its vulnerabilities are typically more dif-
ficult to be exploited compared to the case when one has the total control of
it.

However, the architecture of the system imposes dependencies among vul-
nerabilities. For example, we need to understand if it is easier to exploit a vul-
nerability of a component given that an input link attached to it was already
compromised or a component attached to any of its input links was already
compromised. Dependencies among vulnerabilities can be represented as a new
graph G =< V,D >. We denote with E(α|β) the exploitability of α given that

WVUTPQRSz1, 3

6

yy

7

��

6

��

WVUTPQRSq1, 5
7 -- WVUTPQRSr1, 6
5

mm

9

��

6

��WVUTPQRSp1, 6

6

ii

6

yyWVUTPQRSx1, 2

5

LL

7 -- WVUTPQRSq2, 2

7

LL

WVUTPQRSy1, 9

7

KK

WVUTPQRSz2, 6

5

SS

7

FF

7

99

Fig. 2. Dependencies graph among vulnerabilities

β was already exploited. The edge (β, α) ∈ D if E(α|β) ≥ E0(α), i.e., if it is
easier to compromise element(α) when one has compromised element(β)

∀ν, α ∈ V ∧ ν 6= α : assess E(ν|α)

1 (Complexity)
The number of the exploitabilities to assess is ≤ |V |2 In fact, every vulnerability
needs an exploitability evaluation (|V | figures needed). Moreover, the graph G
has at most |V | · (|V | − 1) edges.

Thus, in general one has to assess |V |2 exploitabilities. However, most of the
vulnerabilities are usually independent, and the numbers one has to guess is typ-
ically closer to |V | than |V |2. Moreover, in the following it will be clear that only
ordering is important, i.e. absolute values of exploitabilities have no meaning: it
is only a convenient way to express the relative easiness of acquiring control of
an element thanks to one of them. Figure 2 shows an exploitability assessment
for the example system: the dependencies among |V | = 10 vulnerabilities im-
pose the assessment of 24 exploitabilities. The number associated to each node is
E0, that is the initial measure of how difficult is to exploit the vulnerability. The
conditional exploitabilities are represented by the numbers on the edges. The as-
sessment depicted in Figure 2 does not take into account that each vulnerability
could be exploited thanks to the previous exploitation of one of the vulnerabilities
on which it depends. Therefore, E0 should be iteratively updated by considering

the easiest (i.e., the maximum) way of exploiting an incoming vulnerability in
the dependencies graph. In turn each incoming vulnerability could be exploited
by controlling the affected element or leveraging on the dependency itself: the
most difficult (i.e., the minimum) constraints the value.

∀ν ∈ V, (ν, γ) ∈ D : E(ν) = max(E0(ν),min(E(ν|γ), E(γ))) (2)

Our methodology consists in iteratively applying the previous formula for
each vulnerability, until the system converges to an equilibrium. Table 1 shows
a possible sequence of iteration and the corresponding equilibrium.

2 (Convergence) At each iteration the exploitability can only be updated with
a greater value. Moreover, it is upper bounded by the maximum value of the
incoming dependencies edges. Therefore no “oscillations” are possible and the
algorithm always converges.

3 (Order) Only the relative order of exploitability values is important: in fact,
only max and min operators are used in our formula, and no arithmetical func-
tions are ever applied.

E0 E1 E2

p1 6 7 7
q1 5 6 6
q2 2 6 6
r1 6 6 6
x1 2 2 2
y1 9 9 9
z1 3 3 3
z2 6 6 6

Table 1. Exploitability update

Risk assessment could be effectively used to evaluate design choices. For
example, making links not exploitable at all (by protecting them with logical
and physical defenses) would virtually change nothing.

Our approach can also be used to evaluate the impact of adding a new vul-
nerable component to a preexisting system. In fact, due to the presence of new
dependencies between vulnerabilities, the new component can affect the security
of the whole system, increasing the exploitability of some of the old vulnerabili-
ties.

3 An example

In this section we introduce a numerical example based on an hypothetical In-
secure Airlines web site. For the sake of simplicity we maintain the same simple
architecture represented in fig.1.

According with the new airline scenario, Node P represents the company
web server, node Q represents the database containing the flights information,
and node R is a web service that manages the frequent flier accounts. Links X
and Z connect the web server to the database and the frequent flier services
respectively. Link Y allows some automatic script on the database to update the
mileage of a customer account.

We associate the following vulnerabilities to the system components:

V1 (node P) SQL injection. An authenticated user can submit a malicious
query that allows him to read or modify any row in the database.

V2 (node Q) Buffer Overflow. The CGI page that loads and displays the flight
information copies the flight number into a small static buffer without check-
ing for possible buffer overflow.

V3 (node Q) A race condition in a local command allows an attacker to read
any file in the web server machine.

V4 (node R) Weak authentication. The access to each frequent flyer account is
protected by a numeric PIN of 4 digits.

The threat that a malicious user could sniff1 the traffic between two compo-
nents is represented introducing three more vulnerabilities: V5 (for X link), V6

(for Y link) and V7 (for Z link).
The airline company is interested in evaluating the risk that an external user

(not a company employee) can add a fake flight reservation. The security analyst
starts enumerating all the possible attacks and combining them to form a large
attack tree. Fig 1.1 reports a piece of the tree in outline form.

code 1.1 Attack Tree

Goal : Fake Reservat ion
1 . Convince an employee to add a r e s e r v a t i o n
1 .1 Blackmail an employee
1 .2 Threaten an employee

2 . Access and Modify the f l i g h t database
2 .1 SQL In j e c t i o n from the web page (V1)
2 .2 Log in to the database
2 . 2 . 1 Guess the password
2 . 2 . 2 S n i f f the password (V7)
2 . 2 . 3 S t ea l the password from the Web−Server machine (AND)
2 . 2 . 3 . 1 Get an account on the Web−Server
2 . 2 . 3 . 1 . 1 Exp lo i t a bu f f e r over f l ow (V2)
2 . 2 . 3 . 1 . 2 Get a c c e s s to an employee account

2 . 2 . 3 . 2 Exp lo i t a race cond i t i on to ac c e s s a protec ted f i l e (V3)

1 We do not consider spoofing and man-in-the-middle attacks in order to do not com-
plicate the example.

The next step consists in assigning the exploitability values of each vulnera-
bility. The following table summarizes the values and the dependencies between
each vulnerability:

Vuln. E0 V1 V2 V3 V4 V5 V6 V7

V1 2 - 10 - 10 - -
V2 0 5 - - - - -
V3 0 - 3 - - - -
V4 4 8 - 10 - 7 10
V5 7 - - - - - -
V6 7 - - - - - -
V7 7 - - - - - -

We do not have enough space to justify the choice of every values in the table,
but in order to provide an idea of what is behind the numbers, we can consider
the case of V2. The second column represents E0(V2), that is the exploitability
of V2 given that none of the other vulnerabilities have been previously exploited
by the attacker. In our case the value is zero. In fact, it is not possible for a
malicious user to directly exploit the buffer overflow since the input the attacker
should manipulate comes directly from the flight repository. For this reason,
if the attacker would be able to insert a malicious row into the database, he
could then force the web server to display that information taking control of the
machine. This dependence is shown in the third column: E(V2|V1) = 5.

_^]\XYZ[V1, 2

5

xx

8

��

_^]\XYZ[V5, 7
10mm

_^]\XYZ[V2, 0

3

��

_^]\XYZ[V4, 4 _^]\XYZ[V6, 7
7mm

_^]\XYZ[V3, 0

10

LL

10

88

_^]\XYZ[V7, 7

10

KK

Fig. 3. Vulnerabilities Dependence Graph

Figure 3 shows the Vulnerability Dependence Graph representation of our
system. Applying our algorithm to the graph, after a couple of iterations, the
system converges to the following fixed point:

E(V1) = 7
E(V2) = 5
E(V3) = 3

E(V4) = 7
This result can seem obvious due to the simplicity of the example but in a

real scenario that can involve dozen of components, also for a skilled user can be
very difficult to figure out all the possibles chain of attacks just looking at the
graph. Moreover, it is possible to see how the presence of a vulnerability in a
branch of the attack tree can affect the exploitability values associated to leaves
belonging to a different branch of the tree.

Anyway, the evaluation of the risk in a distributed environment is just the
first step in a more complicate and interesting process. In fact, one of the main
purpose of our approach is to allow user to locate, analyze, and compare the
impact of security solutions on the whole system under analysis.

In the case of Insecure Airlines, a security manager can propose different
solutions in order to mitigate the total risk of the system. Since security solutions
are usually expensive, it is very important to reduce any possible waste of money.
For this reason the possibility to quickly simulate and explore the impact of
multiple actions allows the user to choose the right solution in order to guarantee
a good security level according to business requirements.

In our example, the only way to log into the database is by knowing the
password (that is stored into the web server host). The file containing the pass-
word can be read thanks to the race condition vulnerability present in one of
the programs installed on the host. Suppose the security manager proposes the
following possible solutions:

– Solution A: Update the vulnerable program with a more secure one.
– Solution B : Fix the buffer overflow vulnerability. So, no one can have the

chance to perform the race condition attack.
– Solution C : Encrypt the communication between the web-server and the

database to make a sniffing attack much more difficult.

Translating these three solutions in numbers, the first is equivalent to setting
V3 and its dependencies to zero, the second to setting V2 and its dependencies
to zero, and the last one to setting V5 to one.

Running again our algorithm in the three different scenarios, we obtain the
following results:

Scenario V1 V2 V3 V4

Base 7 5 3 7
Solution A 7 5 0 7
Solution B 7 0 0 7
Solution C 2 2 2 7

The previous table shows that the first solution does not affect the rest of the
system. The second solution makes the system more secure since it removes the
possibility to exploit V3. Nevertheless, an attacker can still exploit V1 modifying
the database at his will. The third solution seems the better one, since it makes
very hard to exploit three of the four initial vulnerabilities.

Of course, in order to decide if a solution is worthwhile or not, it is necessary
to propagate the exploitability values from the leaves to the root of the attack
tree. In such a way a security analyst can evaluate what is the real danger and
which solution is more appropriate to mitigate it.

4 Related work

Risk, trust, security requirements mapping, and component interdependence are
concepts that are linked together and have been widely discussed in literature.

Baskerville [3] describes the evolution of different methods to measure risk
that sometimes could be used together to improve the result accuracy. Even
though software security risk is extensively discussed in risk management method-
ologies [20, 5, 2], among information security experts there appears to be no
agreement regarding the best or the most appropriate method to assess the
probability of computer incidents [18].

We started our investigation analyzing the STRIDE/DREAD theory [11] and
proposing a simplified way to combine together the assessment values. We then
took into account the problem of risk aggregation that represents a key point to
enable modular reasoning in distributed environments that involve multiple and
heterogenous components.

O.Sami Saydjari et al.[9]present a system security engineering methodology
for discovering system vulnerabilities, and determining what countermeasures
can best close those vulnerabilities.Their approach improves the process “ana-
lyzing IS through an adversary’s eyes”.

Evaluation and analysis of vulnerabilities in isolation is insufficient because
it is important to consider the effects of the interactions among vulnerabilities.
There are many approaches for taking into account vulnerability dependencies
[9, 13].Using a graph representation to model security-related concepts is not a
new approach. For instance, attack graphs [19, 14] use state-transition diagrams
to describe complex attacks that can involve multiple steps. Different techniques,
such as model checking [19], can then be applied to attack graphs in order to
evaluate security properties. The goal of our vulnerability dependence graph is
different since we only need to describe the relationships among vulnerabilities
in order to improve information obtained by the attack tree model [6, 17].

Software components have received a great deal of interest from both in-
dustries and academia as the component based software development paradigm
promises maximum benefits of component reusability and distributed program-
ming. A software component is independently developed and delivered as an
autonomous unit that can be composed to become part of a lager application.
The component interdependence is often ignored or overlooked [4] leading to
incorrect or imprecise models. In order to avoid this problem, one must spec-
ify more complete models taking into account interconnections among system
components. In agreement with this point of view [8, 18, 4, 9, 16] present models
for assessing security risks taking into account interdependence between compo-
nents.

Even though there is no easy way to assess risks and choose the damage val-
ues, there are various approaches that provide methodologies by which the risk
evaluation can be made more systematic. In particular, Sharp et al.[18] develop
a scheme for probabilistic evaluation of the impact of the security threats and
proposes a system for risk management with the goal of assessing the expected
damages due to attacks also in terms of the cost. Z. Dwaikat et al.[8] define secu-
rity requirements for transactions and provide mechanisms to measure likelihood
of violation of these requirements. Unlike us, the authors base the evaluation of
risk on transaction traces combining security requirements, context information
and risks presented by various components. K.Khan et al [12] propose a frame-
work to characterize compositional security contracts of software components.

At the same time, there is a need to automate the modeling phase in the risk
assessment and analysis process. G. Biswas, et al. [4] proposed the use of quali-
tative modeling techniques based on deriving behavior from structural descrip-
tions and causal reasoning to aid automating and enhancing the risk analysis.
Hierarchical schemes are used for describing component structure and system
functionality is derived from a set of primitive functions and parameters defined
for the domain. The authors want to (1) incorporate uncertainty analysis using
probabilistic schemes or belief functions for estimating risk probabilities, and
(2) use causal reasoning and qualitative modeling for consequence analysis. We
introduced an automatic evaluation of the total exploitability of each vulnera-
bility that will then influence the value of total risk. In agreement to [4, 9, 16]
the information computed by the model to calculate the risk could be used as
effect analysis and decisional support.

5 Conclusions

Risk analysis of large distributed systems is still a hard problem for security
managers since it requires a perfect balance of skills, experience, and “black
magic” to be solved.

This paper presents a quantitative approach to evaluate risk in a distributed
environments based on the knowledge of the system architecture and the list of
vulnerabilities of links and components.

The choice of dividing the analysis into four steps simplifies the study of the
problem allowing the security designer to acquire and manipulate risk informa-
tion step by step in an incremental way.

Starting from an attack tree we build a Vulnerability Dependencies Graph
that emphasizes the possible dependencies among vulnerabilities/leaves. In this
way we point out the dependencies among system vulnerabilities that can be lost
in an attack tree representation and that can make the system more vulnerable.
We then propose an equilibrium condition that can be iteratively applied to
propagate exploitability values from one node of the graph to the others.

Even though the number of values that must be initially assigned to each
vulnerability can be fairly high, we strongly belief that our system simplify the
risk analysis process. In fact, since we never use any arithmetic operation to

combine exploitabilities, we only requires (and preserve) that the initial values
respect some kind of ordering criterion.

Finally, our algorithm can be used to automatically evaluate different security
solutions, enabling a security manager to perform a “what if” analysis in order
to analyze the impact of a local modification on the security of the whole system.

We are currently experimenting by applying our approach on real world ex-
amples, in particular focusing on systems based on web services. In principle,
our approach is independent from the level of abstraction one uses to analyze a
system, thus we are planning to extend our analysis to the relationship between
hierarchical assessments.

References

1. http://msgs.securepoint.com/bugtraq/.
2. Christopher Alberts, Audree Dorofee, James Stevens, and Carol Woody. Introduc-

tion to the Octave approach. http://www.cert.org/octave/, 2003.
3. Richard Baskerville. Information system security design methods: Implications for

information systems development. ACM Computing Survey, 25(4):375–412, 1993.
4. Gautam Biswas, Kenneth A. Debelak, and Kazuhiko Kawamura. Application of

qualitative modelling to knoweledge-based risk assessment studies. IEA/AIE ’89:
Second International Conference on Industrial & Engineering Applications of Ar-
tificial Intelligence & Expert Systems-ACM, pages 92–101, 1989.

5. B.Jenkins. Risk analysis helps establish a good security posture; risk management
keeps it that way. whitepaper, pages 1–16, 1998.

6. CERT. Technical report 2001-tn-001.
7. Harvey M. Deitel, Paul J. Deitel, B. DuWaldt, and L. K. Trees. Web Services: A

Technical Introduction. Prentice Hall, 2002.
8. Zaid Dwaikat and Francesco Parisi-Presicce. Risky trust: Risk-based analysis of

software system. Proceedings of the first workshop on Software Engineering for
Secure Systems (SESS05).

9. S. Evans, D. Heinbuch, E.Kyle, J. Piorkowski, and J.Wallener. Risk-based system
security engineering: Stopping attacks with intention. IEEE Security & Privacy,
pages 59–62, 2004.

10. Network Working Group. Internet security glossary. http://rfc.net/rfc2828.

html, May 2000. Request for Comments: 2828.
11. Michael Howard and David Leblanc. Writing secure Code. Microsoft Press, 2003.
12. Khaled Khan, Jun Han, and Yuliang Zheng. A framework for an active interface

to characterize compositional security contracts of software components. 2001
Australian Software Engineering Conference (ASWEC01)-IEEE Computer Society
Press, pages 117–126.

13. I.S. Moskowitz and M.H. Kang. An insecurity flow model. Proceedings of New
Security Paradigms workshop, 1997.

14. S. Noel, S.Jajoidia, B.O’Berry, and M. Jacobs. Efficient minimum-cost network
hardening via exploit dependency graphs. Proceedings of ACSAC’03.

15. M. Elisabeth Pate-Cornell. Fault tree vs. event trees in reliability analysis. Risk
Analysis, 4(3):177–186, 1984.

16. Mehmet Sahinoglu. Security meter:a pratical decision-tree model to quantify risk.
IEEE Security & Privacy, 3(3):18–24, May/June 2005.

17. Bruce Schneier. Modelling security threats. Dr. Dobb’s Journal, dec 1999.
18. Gunter P. Sharp, Philip H. Enslow, Shamkant B. Navathe, and Fariborz Farhmand.

Managing vulnerabilities of information system to security incindets. ACM Inter-
national Conference:5th international conference on Electronic commerce, pages
348–354, 2003.

19. O. Sheyner, J. Haines, S.Jha, R. Lippmann, and J.M. Wing. Automated genera-
tion and analysis of attack graphs. Proceedings of the 2002 IEEE Symposium on
Security and Privacy (S&P’02).

20. Thomas Siu. Risk-eye for IT security guy. Gsec, pages 1–20, 2004.

