
An Empirical Analysis of Input Validation Mechanisms in
Web Applications and Languages

Theodoor Scholte
SAP Research

Sophia Antipolis, France
theodoor.scholte@sap.com

Davide Balzarotti
Institute Eurecom

Sophia Antipolis, France
balzarotti@eurecom.fr

William Robertson
Northeastern University

Boston
wkr@ccs.neu.edu

Engin Kirda
Northeastern University

Boston
ek@ccs.neu.edu

ABSTRACT
Web applications have become an integral part of the daily
lives of millions of users. Unfortunately, web applications
are also frequently targeted by attackers, and attacks such
as XSS and SQL injection are still common. In this pa-
per, we present an empirical study of more than 7000 input
validation vulnerabilities with the aim of gaining deeper in-
sights into how these common web vulnerabilities can be
prevented. In particular, we focus on the relationship be-
tween the specific programming language used to develop
web applications and the vulnerabilities that are commonly
reported. Our findings suggest that most SQL injection and
a significant number of XSS vulnerabilities can be prevented
using straight-forward validation mechanisms based on com-
mon data types. We elaborate on these common data types,
and discuss how support could be provided in web applica-
tion frameworks.

Categories and Subject Descriptors
D.2.0 [Software Engineering]: General—protection mech-
anisms; D.2.8 [Software Engineering]: Metrics—complex-
ity measures, performance measures, product metrics; D.3.3
[Programming Languages]: Language Constructs and
Features—Data types and structures, frameworks

General Terms
Security vulnerabilities

Keywords
input validation, web application, programming language,
security

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’12 March 25-29, 2012, Riva del Garda, Italy.
Copyright 2011 ACM 978-1-4503-0857-1/12/03 ...$10.00.

1. INTRODUCTION
Web applications have become essential in our daily lives,

and millions of users access these applications to communi-
cate, socialize, and perform financial transactions. Unfortu-
nately, due to their increased popularity as well as the high
value data they expose, web applications have also become
common targets for attackers.

In the past decade, much effort has been spent on mak-
ing web applications more secure, and much of this work
has focused on mitigating input validation vulnerabilities.
The security research community has proposed numerous
tools and techniques to detect and prevent such vulnera-
bilities, including static code analysis [8, 11, 27, 28, 31],
dynamic tainting [18, 19, 20], prevention by construction or
by design [7, 10, 21, 32], and client-side mechanisms exe-
cuting within the browser [2, 6, 9, 26]. Some of these tech-
niques have been integrated in developer toolsets (e.g., [13,
5]). Moreover, organizations such as OWASP [25] and the
SANS Institute [22] have started to offer training programs
that aim to educate application developers on how to detect,
prevent, or avoid these classes of vulnerabilities.

Despite these efforts, several studies have shown that many
web applications are still prone to these well-known and
well-studied classes of vulnerabilities [12, 30]. In addition,
Scholte et al. [23] have shown that the complexity of the
attacks have not been increasing over time, and that most
exploits are still simple in nature. Clearly, web developers
often fail to apply existing countermeasures, and a new class
of solutions is required to help improve the security situation
on the web.

An important property of a programming language is the
type system that is used. A type system classifies program
statements and expressions according to the values they can
compute, and it is useful for statically reasoning about possi-
ble program behaviors. Some popular web languages such as
PHP and Perl are weakly-typed, meaning that the language
implicitly converts values when operating with expressions
of a different type.

The advantage of weakly-typed languages from a web de-
veloper’s point of view is that they are often easy to learn
and use. Furthermore, they allow developers to create appli-
cations quickly as they do not have to worry about declar-
ing data types for the input parameters of a web application.
Hence, most parameters are treated as generic “strings” even

though they might actually represent an integer value, a
boolean, or a set of specific characters (e.g., an e-mail ad-
dress). As a result, attacks are often possible if the valida-
tion is poor. For example, an attacker could inject scripting
code (i.e., a string) into the value of a parameter that is
normally used by the application to store an integer.

In order to gain deeper insights into the reasons behind
common vulnerabilities in web applications, we analyzed
around 3,933 cross-site scripting (XSS) and 3,758 SQL injec-
tion vulnerabilities affecting applications written in popular
languages such as PHP, Python, ASP, and Java. For more
than 800 of these vulnerabilities, we manually extracted and
analyzed the code responsible for handling the input, and de-
termined the type of the affected parameter (e.g., boolean,
integer, or string). Furthermore, we studied 79 web appli-
cation frameworks available for many popular programming
languages. Our results suggest that most SQL injection and
a significant number of XSS vulnerabilities can be prevented
using straight-forward validation mechanisms based on com-
mon data types.

This paper makes the following contributions:

• We have analyzed in detail more than 3500 XSS and
3500 SQL injection vulnerability reports. We have also
studied the validation functions provided by 79 web
application frameworks. To our knowledge, this is the
largest empirical study of its kind conducted to date.

• Our study suggests that many SQL injection and XSS
vulnerabilities can be prevented if web languages and
frameworks would support the enforcement of common
data types such as integer, boolean, and specific types
of strings such as an e-mail or a delivery address.

The rest of this paper is organized as follows. The next
section describes our experimental methodology. Section 3
presents an analysis of the SQL injection and XSS vulnera-
bilities affecting popular web applications. In addition, we
also present analysis results on the validation functional-
ity typically provided by web application frameworks. In
Section 4, we discuss our key findings and summarize the
insights we distilled. We present related work in Section 5,
and briefly conclude the paper in Section 6.

2. DATA COLLECTION AND METHODOL-
OGY

In order to study the characteristics of vulnerable web
applications, it is necessary to have access to a significant
amount of vulnerability data. Hence, we collected and clas-
sified a large number of vulnerability reports. These vul-
nerability reports were used to identify the programming
language each web application was developed in. Further-
more, we used the vulnerability reports we gathered to semi-
automatically extract vulnerable input parameters from the
source code of web applications. Finally, by automatically
collecting data from a number of open source project host-
ing services, we were able to estimate the popularity of web
programming languages.

In the following, we discuss our methodology for collect-
ing, classifying, and extracting information from vulnerabil-
ity reports, project hosting services, and open source web
applications.

2.1 Vulnerability Reports

2.1.1 Data Gathering
Our baseline source of vulnerability information is the

publicly available data from the National Vulnerability Database
(NVD) provided by NIST [17]. The Common Vulnerabilities
and Exposures (CVE) initiative hosted by MITRE [15] sup-
plies data for the NVD. Each CVE entry has a unique CVE
identifier, a status (“entry” or “candidate”), and a general
description. In addition to CVE data, the NVD database
includes the following information that is relevant for our
study:

• The vulnerability type according to the Common Weak-
ness Enumeration (CWE) classification system [16].

• The name of the affected application, version numbers,
and the vendor of the application represented by Com-
mon Platform Enumeration (CPE) identifiers [14].

For each candidate and accepted CVE entry, we extracted
and stored the identifier, the description, and the CWE vul-
nerability classification.

2.1.2 Vulnerability Classification
Since our study focuses on particular classes of vulnerabil-

ities, it is essential to classify the vulnerability reports. As
mentioned in the previous section, CVE entries in the NVD
database are classified according to the Common Weakness
Enumeration classification system, which aims to be a com-
prehensive taxonomy of software weaknesses. NVD uses
only a small subset of 19 CWEs for mapping CVEs to CWEs;
among those are XSS (CWE-79) and SQL injection (CWE-
89).

Although NVD provides a mapping between CVEs and
CWEs, this mapping is unfortunately far from complete,
and many CVE entries do not have any classification at all.
For this reason, we chose to perform a classification based
on both the CWE classification as well as the description
of the CVE entry. In general, a CVE description is for-
matted according to the following pattern: {description of
vulnerability} {affected application} allows {description of
attacker} {impact and location description}. Thus, the CVE
description includes the vulnerability type.

For fetching XSS–related CVEs from the total set of CVEs,
we selected the CVEs associated with CWE identifier“CWE-
79”. Then, we added the CVEs having the text “cross-
site scripting” in their description by performing a case-
insensitive query. Similarly, we classified SQL injection–
related CVEs by using the CWE identifier “CWE-89” or the
“SQL injection” keyword.

2.1.3 Programming Language Classification
To study the relationship between programming language

and vulnerable web applications, we automatically analyzed
XSS and SQL injection–related CVEs. As mentioned in the
previous section, many CVE entries contain a description
of the location of a vulnerability in the web application. In
general, vulnerability reports use fully–qualified filenames to
identify the vulnerable script. We used the filename exten-
sion to classify whether an application is written in PHP

(.php), ASP/ASP.NET1 (.asp, .aspx), ColdFusion (.cfm),
Java (.jsp), Perl (.pl), and Python (.py).

The programming language of some applications could not
be determined in an automated fashion as the corresponding
vulnerability reports did not provide any information con-
cerning the vulnerable scripts. In these cases, we manually
determined the programming language by performing search
queries and analyzing the source code of the web application.

2.2 Attack Vectors
We analyzed the source code of a significant number of

vulnerable web applications with the aim of understanding
to what extent data typing and validation mechanisms could
help in preventing XSS and SQL injection vulnerabilities. In
order to obtain a test set of applications with a high num-
ber of vulnerable input parameters, we chose to focus our
study on 20 popular open source PHP web applications that
contained the highest incidence of XSS vulnerabilities, and
on 20 with the highest incidence of SQL injection vulnera-
bilities. The 28 applications belonging to the two, largely
overlapping, sets are: claroline, coppermine, deluxebb, dru-
pal, e107, horde, jetbox, joomla, mambo, mantis, mediawiki,
moodle, mybb, mybloggie, papoo, phorum, phpbb, phpfu-
sion, phpmyadmin, pligg, punbb, runcms, serendipity, squir-
relmail, typo3, webspell, wordpress, and xoops.

For each of these applications, we manually examined the
corresponding vulnerability reports to identify the specific
application version and any example of attack inputs. Given
this information, we downloaded the source code of each
application and linked the input vectors to the application’s
source code to determine an appropriate data type. We
repeated this process for a total of 809 vulnerability reports.

In the process of linking vulnerability reports to source
code, we first used the version of the source code that was
known to be vulnerable. Then, we repeated the process and
linked the vulnerability reports to source code in which the
vulnerabilities were patched. To determine the data type of
the vulnerable input parameter, we manually analyzed how
each vulnerability was patched and how the value of the
input parameter was used throughout the web application.

3. ANALYSIS
In this section, we present the results of our empirical

study, and draw conclusions from an analysis of the data. In
particular, we first examine whether certain languages are
more prone to XSS and SQL injection vulnerabilities. Then,
we analyze the type of the input parameters that commonly
serve as attack vectors, and we compare them with partic-
ular features provided by the web programming languages,
or by the application frameworks available to them.

3.1 Language Popularity and Reported Vul-
nerabilities

A central question of this paper concerns whether the
choice of programming language used to develop web ap-
plications influences the exposure of those applications to
XSS and SQL injection vulnerabilities. To that end, we per-
formed a comparison of the distribution of popular web pro-
gramming languages to the distribution of reported XSS and

1We chose to determine the platform instead of the language
as we could not automatically identify whether an applica-
tion was implemented in C# or Visual Basic.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Popularity XSS SQL

Unknown

Ruby

Python

Coldfusion

C / C++

ASP.NET

Classic ASP

Java

Perl

PHP

Figure 1: Distributions of popularity, reported XSS vulner-
abilities, and reported SQL injection vulnerabilities for sev-
eral web programming languages. The language popularity
distribution was calculated by crawling open source project
hosting services, while vulnerability data was drawn from
the NVD [17].

SQL injection vulnerabilities for each of those languages.
Language popularity was calculated by crawling open source

project hosting services such as Google Code, Sourceforge,
and Freshmeat. For each of these services, we identified web
application projects by filtering on project tags using val-
ues such as “cms”, “dynamic content”, and “message board”.
These projects were classified according to the primary de-
velopment language by using each service’s built-in search
functionality.

The vulnerability data was drawn from the NVD [17] by
automatically classifying reports according to the language
of the affected application. For each report, our analysis
checked whether the report concerned an XSS or SQL in-
jection vulnerability. Our analysis identified 5,361 XSS and
4,773 SQL injection CVE entries out of a total of 39,081 en-
tries. Because 142 of these entries did not correspond to any
CPE values identifying vulnerable applications, these were
excluded from that set. The resulting set of CVE entries
used in our analysis was composed of 3,933 XSS and 3,758
SQL injection reports.

An automated classification of this set of vulnerability re-
ports was able to classify 3,254 and 2,187 of the XSS and
SQL injection CVE entries, respectively, as corresponding
to a particular programming language. The remainder of
the CVE entries were manually classified.

The distributions of language popularity and vulnerability
reports are shown in Figure 1. The graph shows the statis-
tics for 9 popular programming languages. Unfortunately,
for 3.8% of SQL injection and 19% of XSS vulnerability re-
ports, we were not able to automatically determine the pri-
mary development language of the application. These cases,
represented by the “Unknown” category in Figure 1, are of-
ten related to commercial products for which the software
companies do not provide information about the develop-
ment language on their websites.

Under the null hypothesis — that is, that the choice of
programming language does not influence the exposure of
applications to XSS and SQL injection vulnerabilities — one
would expect the relative distributions of popularity and
reported vulnerabilities to be roughly equivalent. However,
the histogram shows that this is not always the case.

The result for PHP-based applications is an illustrative

example. 52% of the applications in our test set were de-
veloped in PHP, a value that also corresponds to the share
of reported XSS vulnerabilities in PHP applications. There-
fore, it may seem that PHP is intrinsically no more or less
vulnerable than other languages to this kind of attack. How-
ever, PHP-related vulnerabilities comprised almost 80% of
the SQL injection reports from our collection of CVE entries.
A similar, but opposite trend mismatch can be observed for
many other languages. For example, although 10% of the
applications in our dataset were written in Java, we found
that only 0.5% of SQL injection vulnerabilities are associ-
ated with Java-based applications. Clearly, Java applica-
tions seem to be less prone to both XSS and SQL injection
vulnerabilities. These differences are too common and too
large to be considered statistically insignificant.

This is also shown by Pearson’s chi-square tests which we
used to assess the goodness of fit. We tested the hypothesis
that the language popularity and the number of vulnera-
bilities per language is not significantly different. For XSS,
we found chi-square 48.4 and for SQL injection we found
chi-square 138. The degrees of freedom is 8. Looking these
numbers up in the chi-square table shows that both prob-
abilities are less than 0.001 meaning that the hypothesis is
not true. Thus, the number of XSS respectively SQL injec-
tion vulnerabilities for a given language is not determined
by the popularity of that language.

Note that there may be many possible reasons to explain
the discrepancies. For example, one possible explanation
might be that Java developers are simply more careful than
those that favor other languages, and that PHP developers
are instead worse, on average, at applying known defense
techniques to prevent SQL injection. On the other hand,
it might also be that certain languages, as well as the web
development frameworks available for those languages, are
intrinsically more resistant to — or provide better defenses
against — XSS and SQL injection vulnerabilities.

Another possible reason could be that the web develop-
ment frameworks available for a certain language provide a
better set of functionality (or a better API for that function-
ality) to properly sanitize the user inputs, thus making the
life easier for the web developers. In the rest of the section,
we explore in more detail these possibilities by analyzing the
impact of the language type system on the security of the
application, and the functionality provided by common ap-
plication frameworks that can be used to prevent XSS and
SQL injection vulnerabilities.

3.2 Language Choice and Input Validation
As we saw from Figure 1, the choice of programming lan-

guage clearly has an influence on the exposure of applica-
tions developed in those languages to XSS and SQL injection
vulnerabilities. While there are several plausible explana-
tions for this phenomenon, one likely hypothesis is that some
programming languages are intrinsically more robust against
the introduction of web application vulnerabilities. In the
following, we examine a particular mechanism by which a
language or framework might mitigate the potential for web
application attacks.

3.2.1 Input Validation.
One defensive mechanism that is critical for the correct

functioning of applications is input validation. In the ab-
stract, input validation is the process of assigning semantic

POST /payment/submit HTTP/1.1

Host: example.com

Cookie: SESSION=cbb8587c63971b8e

[...]

cc=1234567812345678&month=8&year=2012&

save=false&token=006bf047a6c97356

Figure 2: Example HTTP request.

meaning to unstructured and untrusted inputs to an ap-
plication, and ensuring that those inputs respect a set of
constraints describing a well-formed input. For web appli-
cations, inputs take the form of key-value pairs of strings.
The validation of these inputs may be performed either in
the browser using Javascript, or on the server. Since there
is currently no guarantee of the integrity of computation
in the browser, security-relevant input validation should be
performed on the server, and, therefore, we restrict our dis-
cussion of input validation to this context.

To elucidate the input validation process for server-side
web applications, consider the pedagogical HTTP request
shown in Figure 2. This figure shows a typical structure for
a payment submission request to a fictional e-commerce ap-
plication. As part of this request, there are several input pa-
rameters that the controller logic for /payment/submit must
handle: cc, a credit card number; month, a numeric month;
year, a numeric year; save, a flag indicating whether the
payment information should be saved for future use; token,
an anti-CSRF token; and SESSION, a session identifier. Each
of these request parameters requires a different type of input
validation. For instance, the credit card number should be
a certain number of characters and pass a Luhn check. The
month parameter should be an integer value between 1 and
12 inclusive. The year parameter should also be an integer
value, but can range from the current year to an arbitrary
year in the near future. The save flag should be a boolean
value, but as there are different representations of logical
true and false (e.g., {true, false} , {1, 0} , {yes, no}), the ap-
plication must consistently recognize a fixed set of possible
values.

Input validation, in addition to its role in facilitating pro-
gram correctness, is a helpful tool to prevent the introduc-
tion of vulnerabilities into web applications. Were an at-
tacker to supply the value

year=2012’; INSERT INTO admins(user, passwd)
VALUES(’foo’, ’bar’);--

to our fictional e-commerce application as part of a SQL
injection to escalate privileges, proper input validation would
recognize that the malicious value was not a valid year, with
the result that the application would refuse to service the re-
quest.

Input validation can occur in multiple ways. Validation
can be performed implicitly — for instance, through type-
casting a string to a primitive type like a boolean or integer.
For the example attack shown above, a cast from the in-
put string to an integer would result in a runtime cast error,
since the malicious value is not a well-formed integer. On the
other hand, input validation can be performed explicitly, by
invoking framework-provided validation routines. Explicit
validation is typically performed for input values exhibiting

complex structure, such as email addresses, URLs, or credit
card numbers.

In this respect, the choice of programming language and
framework for developing web applications plays an impor-
tant role in the security of those applications. First, if a
language features a strong type system such that typecasts
of ill-formed input values to certain primitive types will re-
sult in runtime errors, the language can provide an implicit
defense against the introduction of vulnerabilities like XSS
and SQL injection. Second, if a language framework pro-
vides a comprehensive set of input validation routines for
complex data such as email addresses or credit card num-
bers, the invocation of these routines can further improve
the resilience of a web application to the introduction of
common vulnerabilities.

3.3 Typecasting As an Implicit Defense
To quantify the extent to which typecasting of input val-

ues to primitive types might serve as a layer of defense
against XSS and SQL injection vulnerabilities, we performed
an analysis over vulnerability reports for a test set of web
applications. Specifically, we examined the source code of
these applications to determine the whether the vulnerable
input has a primitive type. Where we could not directly
identify the type, we looked at the modifications made to
the source code to resolve the vulnerability.

We extracted all the input parameters of the applications
through the approach described in Section 2.2. Following
this approach, we were able to link 270 parameters corre-
sponding to XSS attack vectors, and 248 parameters corre-
sponding to SQL injection vectors to the source of of the
test set of applications.2

Figures 3a and 3b show an overview of the types corre-
sponding to input parameters vulnerable to XSS and SQL
injection. Most of the vulnerable parameters had one of the
following types: boolean, numeric, structured text, free text,
enumeration, or union. Booleans can take either logical true
or false values. Examples of numeric types are integers or
floating point numbers. By “structured text”, we mean that
the parameter is a string and, additionally, there is an ex-
pected structure to the string. A real name, URL, email
address, or a username in a registration form are examples
of this type. In contrast, the “free text” type denotes arbi-
trary, unstructured strings. Input parameters corresponding
to the enumeration type should only accept a finite set of
values that are known in advance. Examples are genders,
country names, or a select form field. Finally, a union type
denotes a variable that combines multiple types (e.g., a value
that should either be a numeric value or a boolean value).

Only about 20% of the input validation vulnerabilities are
associated with the free text type. This means that in these
cases, the application should accept an arbitrary text input.
Hence, an input validation vulnerability of this type can only
be prevented by sanitizing the user-supplied input.

Interestingly, 35% of the input parameters vulnerable to
XSS are actually numeric, enumeration, or boolean types
(including lists of values of these types), while 68% of the
input parameters vulnerable to SQL injections correspond
to these simple data types. Thus, the majority of input
validation vulnerabilities for these applications could have
been prevented by enforcing the validation of user-supplied

2Many CVE reports do not mention any attack vectors.
Hence, we excluded them for this analysis.

boolean

3%

enumera on

12%

number

15%

structured text

43%

freetext

21%
list of structured

text

0%

list of freetext

1%

list of number

1%

list of boolean

3%

list of

enumera on

1%

union types

0%
list of union

0%

(a) XSS vulnerabilities.

boolean

4%

enumera on

10%

number

45%

structured text

24%

freetext

7%

list of structured

text

1%

list of freetext

1%

list of number

7%

union types

1%

(b) SQL injection vulnerabilities.

Figure 3: Data types corresponding to vulnerable input pa-
rameters.

input based on simple data types. We believe that the large
number of parameters vulnerable to SQL injection that cor-
respond to the numeric type is caused by the phenomenon
that many web applications use integers to identify objects
and use these values in the application logic that interacts
with the backend database (e.g. to identify users, messages,
or blog posts).

3.4 Input Validation As an Explicit Defense
In Section 3.2 we argued that a comprehensive support

for input validation in popular web application frameworks
can improve the resilience of a language to the introduc-
tion of XSS and SQL injection vulnerabilities. Even though
developers must remember to explicitly use these validation
functions for every possible input of the application, the fact
that the right functions are already provided by the frame-
work greatly simplifies the process.

To verify the extension of the support offered by common
frameworks, we first need to extract the different classes
of structured text responsible for most of the attack against
web applications. Figures 4b and 4a show a detailed overview
of which particular “structured text” is responsible for most
of the XSS and SQL injection vulnerabilities. The graph
shows that web applications would benefit from input vali-
dation routines that are able to sanitize complex data such
as URLs, usernames, and email addresses, since these data
classes are often used as attack vectors.

However, implementing them and systematically analyz-

path

0%

realname

4%

url

5%

password

9%

ip

2%

hostname

0%

filename

4%

date

4%

alphanumeric

9%

bbcode tag

0%

email

15%

username

24%

search

24%

(a) XSS vulnerabilities.

search

6%

realname

1%

path

3%

password

2%

ip

2%

hostname

1%

filename

9%

date

0%

bbcode tag

8%

email

10%

alphanumeric

14%
username

11%

url

33%

(b) SQL injection vulnerabilities.

Figure 4: Structured string corresponding to vulnerable in-
put parameters.

ing them for correctness and safety is not a simple task.
Therefore, one should expect this functionality to be pro-
vided by many application frameworks. In our experiments,
we analyzed 78 open source web application frameworks for
several web programming languages, including: PHP, Perl,
Python, Ruby, .NET, and Java. These frameworks were se-
lected on the basis of factors such as popularity as well as
the size and activity level of the developer and user commu-
nities. For each framework, we classified the kinds of vali-
dation functions for complex input values that are exposed
to developers.

Partial results of this classification are shown in Table 1.
We observe that almost 20% of the frameworks we studied
do not provide any validation functionality at all. In fact,
of the 78 frameworks we analyzed, only 37 provided any
support for validation of complex input data, though these
frameworks supported a wide variety of different data types
— 31 in all.3

Unfortunately, there is a mismatch between the set of vali-
dation functions normally provided by these frameworks and
the common attack vectors reported in Figures 4a and 4b.
For example, 43% of the frameworks do not provide any way
to automatically validate URLs that are often used for XSS
attacks.

3In the interests of space, in Table 1 we summarize only
those validation functions that appeared in five or more
frameworks.

4. DISCUSSION
Our empirical results from Section 3 indicate that the im-

plicit validation resulting from casting input data to primi-
tive types observed in applications written in strongly-typed
languages is, indeed, correlated to a decreased exposure to
XSS and SQL injection vulnerabilities. Additionally, the
data indicates that the availability of explicit validation func-
tions is also correlated with a reduced count of reported vul-
nerabilities.

As a result, we can conclude that there is empirical ev-
idence to support the general intuition that input valida-
tion serves as an effective layer of defense against XSS and
SQL injection vulnerabilities. In fact, it is likely that the
increased usage of strongly-typed languages and explicit in-
put validation functions for web programming would have
similar benefits for other classes of vulnerabilities, as well as
more general software faults.

Note, however, that we observe that input validation is not
a panacea for eradicating vulnerabilities in web applications.
For example, a particular drawback of the explicit input
validation for complex input data is that the developer is
responsible for applying the appropriate validator to each
and every possible user input that is not already covered by
implicit typecasting. Unfortunately, this is, as operational
experience has demonstrated in the case of web application
output sanitization, an arduous and error-prone task [23].

Therefore, we advocate that, analogous to the case of
framework support for automatic output sanitization, web
development languages and frameworks should support the
automatic validation of web application inputs as an addi-
tional security measure against both XSS and SQL injection
vulnerabilities, as well as other security-relevant application
logic flaws.

An automatic input validation policy can take several con-
crete forms. One such instantiation would be to enrich the
type system of an appropriate strongly-typed web program-
ming language, such that the language could infer the proper
validation routines to apply for a wide variety of common in-
put data. Another possibility would be framework support
for a centralized policy description that explicitly enumer-
ates the possible input vectors to an application, as well as
the appropriate validation functions to apply. The inves-
tigation of these avenues for automatic input validation is
promising research work.

5. RELATED WORK
Our work is not the first study of vulnerabilities in web

applications. Fonseca et al. studied how software faults re-
late to web application security [4, 24]. Their results show
that only a small set of software fault types is responsible
for most of the XSS and SQL injection vulnerabilities in web
applications. Moreover, they empirically demonstrated that
the most frequently occurring fault type is that of missing
function calls to sanitization or input validation functions.
Our work partially corroborates this finding, but also focuses
on the potential for automatic input validation as a means
of improving the effectiveness of existing input validation
methods.

Independent from our work, Weinberger et al. studied in
detail how effective web application frameworks are in san-
itizing user-supplied input to defend applications against
XSS attacks [29]. In their work, they compare the sanitiza-

Language PHP Perl Python Ruby .NET Java Total

Frameworks 21 4 2 0 3 7 37 (100%)
Email 16 2 1 0 3 7 29 (78%)
Date 13 4 2 0 2 3 24 (64%)
URL 11 1 2 0 2 5 21 (57%)

Alphanumeric 10 2 1 0 1 0 14 (38%)
Phone 7 1 0 0 0 1 9 (24%)
Time 6 1 2 0 0 0 9 (24%)

Password 4 3 0 0 0 2 9 (24%)
IP Address 6 1 1 0 0 0 8 (22%)

Filename 4 2 1 0 0 0 7 (19%)
Credit card 3 0 0 0 1 3 7 (19%)

Table 1: Framework support for various complex input validation types across different languages.

tion functionality provided by web application frameworks
and the features that popular web applications require. In
contrast to our work, their focus is on output sanitization
as a defense mechanism against XSS, while we investigate
the potential for input validation as an additional layer of
defense against both XSS and SQL injection.

While much research effort has been spent on applying
taint-tracking techniques [8, 11, 18, 19, 20, 27, 28, 31] to en-
sure that untrusted data is sanitized before its output, less
effort has been spent on the correctness of input validation
and sanitization. Wassermann proposed an approach based
on string-taint analysis to determine the set of strings an ap-
plication may generate [28]. Balzarotti et al. investigated the
application of static and dynamic taint analysis techniques
to check the correctness of the sanitization process [1]. The
evaluation of the two tools shows that input validation vul-
nerabilities can be caused by incorrect implementations of
validation and sanitization routines.

Finifter et al. also studied the relationship between the
choice of development tools and the security of the result-
ing web applications [3]. Their study focused in-depth on
nine applications written to an identical specification, with
implementations using several languages and frameworks,
while our study examined a broader selection of applica-
tions, languages, and frameworks. While their study did
not find a relationship between the choice of development
tools and application security, their work shows that au-
tomatic, framework-provided mechanisms are preferable to
manual mechanisms for mitigating vulnerabilities related to
Cross-Site Request Forgery, broken session management and
insecure password storage.

6. CONCLUSION
Web applications have become an important part of the

daily lives of millions of users. Unfortunately, web applica-
tions are also frequently targeted by attacks such as XSS
and SQL injection.

In this paper, we presented our empirical study of more
than 7000 web application vulnerabilities and more than 70
web application development frameworks with the aim of
gaining deeper insights into how common web vulnerabil-
ities can be prevented. In the study, we have focused on
the relationship between the specific programming language
used to develop web applications, and the vulnerabilities
that are commonly reported.

Our findings suggest that many SQL injection and XSS
could easily be prevented if web languages and frameworks
would be able to automatically enforce common data types
such as integer, boolean, and specific types of strings such
as e-mails and URLs.

Acknowledgments

The research leading to these results was partially funded
by the European Union Seventh Framework Programme
(FP7/2007-2013) from the PoSecCo project (contract N 216917)
and contract N 257007, by the FFG - Austrian Research Pro-
motion Agency from the COMET K1-project and by Na-
tional Science Foundation grant CNS-1116777. This work
has also been supported by the French National Research
Agency through the CESSA and VAMPIRE projects. We
would also like to thank Secure Business Austria for their
support.

7. REFERENCES
[1] D. Balzarotti, M. Cova, V. Felmetsger, N. Jovanovic, E. Kirda,

C. Krügel, and G. Vigna. Saner: composing static and dynamic
analysis to validate sanitization in web applications. In
Proceedings of the IEEE Symposium on Security and Privacy,
Oakland, CA, USA, May 2008.

[2] D. Bates, A. Barth, and C. Jackson. Regular expressions
considered harmful in client-side XSS filters. In Proceedings of
the 19th International Conference on the World Wide Web,
pages 91–100, Raleigh, NC, USA, 2010. ACM.

[3] M. Finifter and D. Wagner. Exploring the Relationship
Between Web Application Development Tools and Security. In
USENIX Conference on Web Application Development
(WebApps). USENIX Association, June 2011.

[4] J. Fonseca and M. Vieira. Mapping software faults with web
security vulnerabilities. In Proceedings of the IEEE
Internation Conference on Dependable Systems and
Networks, pages 257–266, June 2008.

[5] Fortify Software. Fortify Software Security Assurance Products.
http://www.fortify.com, 2011.

[6] T. Jim, N. Swamy, and M. Hicks. Defeating script injection
attacks with browser-enforced embedded policies. In
Proceedings of the 16th International Conference on the
World Wide Web, pages 601–610, Banff, AB, CA, 2007. ACM.

[7] M. Johns, C. Beyerlein, R. Giesecke, and J. Posegga. Secure
Code Generation for Web Applications. In International
Symposium on Engineering Secure Software and Systems,
LNCS 5965, pages 96–113. Springer, 2010.

[8] N. Jovanovic, C. Kruegel, and E. Kirda. Pixy: A Static
Analysis Tool for Detecting Web Application Vulnerabilities
(Short Paper). In Proceedings of the 2006 IEEE Symposium
on Security and Privacy, pages 258–263, Oakland, CA, USA,
2006. IEEE Computer Society.

[9] E. Kirda, C. Kruegel, G. Vigna, and N. Jovanovic. Noxes: a
client-side solution for mitigating cross-site scripting attacks. In
Proceedings of the 2006 ACM Symposium on Applied
Computing, pages 330–337, Dijon, FR, 2006. ACM.

[10] B. Livshits and U. Erlingsson. Using web application
construction frameworks to protect against code injection
attacks. In Proceedings of the 2007 Workshop on
Programming Languages and Analysis for Security, pages
95–104, San Diego, CA, USA, 2007. ACM.

[11] V. B. Livshits and M. S. Lam. Finding Security Errors in Java
Programs with Static Analysis. In Proceedings of the 14th
USENIX Security Symposium, pages 271–286, Aug 2005.

[12] B. Martin, M. Brown, A. Paller, and D. Kirby. 2011
CWE/SANS Top 25 Most Dangerous Software Errors.
http://cwe.mitre.org/top25/, 2011.

[13] Microsoft Inc. MSDN Code Analysis Team Blog.
http://blogs.msdn.com/b/codeanalysis/, 2010.

[14] MITRE. Common Platform Enumeration (CPE).
http://cpe.mitre.org/, 2010.

[15] MITRE. Common vulnerabilities and exposures (cve).
http://cve.mitre.org/, 2010.

[16] MITRE. Common weakness enumeration (cwe).
http://cwe.mitre.org/, 2010.

[17] National Institute of Standards and Technology. National
Vulnerability Database Version 2.2. http://nvd.nist.gov/, 2010.

[18] J. Newsome and D. X. Song. Dynamic Taint Analysis for
Automatic Detection, Analysis, and Signature Generation of
Exploits on Commodity Software. In Proceedings of the ISOC
Network and Distributed Systems Symposium, 2005.

[19] A. Nguyen-Tuong, S. Guarnieri, D. Greene, J. Shirley, and
D. Evans. Automatically Hardening Web Applications Using
Precise Tainting. In SEC, pages 295–308, 2005.

[20] T. Pietraszek and C. V. Berghe. Defending Against Injection
Attacks Through Context-Sensitive String Evaluation. In
Proceedings of the International Symposium on Recent
Advances in Intrusion Detection, pages 124–145, 2005.

[21] W. Robertson and G. Vigna. Static enforcement of web
application integrity through strong typing. In Proceedings of
the 18th USENIX Security Symposium, pages 283–298.
USENIX Association, 2009.

[22] SANS Intitute. Information Security Training, Certification &
Research. http://www.sans.org/, 2011.

[23] T. Scholte, D. Balzarotti, and E. Kirda. Quo Vadis? A Study of
the Evolution of Input Validation Vulnerabilities in Web
Applications. In Proceedings of the International Conference
on Financial Cryptography and Data Security, Bay Gardens
Beach Resort, Saint Lucia, 2011.

[24] N. Seixas, J. Fonseca, M. Vieira, and H. Madeira. Looking at
Web Security Vulnerabilities from the Programming Language
Perspective: A Field Study. In Proceedings of the
International Symposium on Software Reliability Engineering,
pages 129–135. IEEE Computer Society, 2009.

[25] The Open Web Application Security Project. OWASP – The
Open Web Application Security Project.
http://www.owasp.org/, 2011.

[26] K. Vikram, A. Prateek, and B. Livshits. Ripley: automatically
securing web 2.0 applications through replicated execution. In
Proceedings of the 16th ACM Conference on Computer and
Communications Security, pages 173–186, Chicago, IL, USA,
2009. ACM.

[27] G. Wassermann and Z. Su. Sound and Precise Analysis of Web
Applications for Injection Vulnerabilities. In Proceedings of the
ACM SIGPLAN 2007 Conference on Programming Language
Design and Implementation, San Diego, CA, USA, Jun 2007.
ACM.

[28] G. Wassermann and Z. Su. Static Detection of Cross-Site
Scripting Vulnerabilities. In Proceedings of the 30th
International Conference on Software Engineering, Leipzig,
GER, May 2008. ACM.

[29] J. Weinberger, P. Saxena, D. Akhawe, M. Finifter, R. Shin, and
D. Song. An Empirical Analysis of XSS Sanitization in Web
Application Frameworks. Technical report, UC Berkeley, 2011.

[30] WhiteHat Security. WhiteHat Security Statistics Report.
http://www.whitehatsec.com, 2011.

[31] Y. Xie and A. Aiken. Static detection of security vulnerabilities
in scripting languages. In Proceedings of the 15th USENIX
Security Symposium, Vancouver, B.C., Canada, 2006. USENIX
Association.

[32] D. Yu, A. Chander, H. Inamura, and I. Serikov. Better
abstractions for secure server-side scripting. In Proceedings of

the 17th International Conference on the World Wide Web,
pages 507–516, Beijing, CN, 2008. ACM.

