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Abstract—Recent advances in wireless networks enable decen-
tralized cooperative and nomadic work scenarios where mobile
users can interact in performing some tasks without being per-
manently online. Scenarios where connectivity is transient and
the network topology may change dynamically are considered.
Connectivity among nodes does not require the support offered by
a permanent infrastructure but may rely on ad hoc networking
facilities. In this paper, a scenario in which a nomadic group
of software engineers cooperate in developing an application is
investigated. The proposed solution, however, is not software
process specific but holds for other cases where shared documents
are developed cooperatively by a number of interacting nomadic
partners. Support tools for these groups are normally based on
a client–server architecture, which appears to be unsuitable in
highly dynamic environments. Peer-to-peer solutions, which do
not rely on services provided by centralized servers, look more
promising. This paper presents a fully decentralized cooperative
infrastructure centered around peer-to-peer versioning system
(PeerVerSy), a configuration management tool based on a peer-
to-peer architecture, which supports cooperative services even
when some of the collaborating nodes are offline. Some prelimi-
nary experiences gained from its use in a teaching environment
are also discussed.

Index Terms—Computer-supported cooperative work (CSCW),
cooperative software development, nomadic computing,
versioning.

I. INTRODUCTION

N ETWORKED distributed systems are increasingly be-
coming the main infrastructures over which people coop-

erate in their daily work. Cooperative work, which traditionally
required people to interact in a shared physical space, has been
shifting toward being computer supported. This gave strong
impetus to research on foundations, methodologies, and tech-
nologies for computer-supported cooperative work (CSCW)
[1]. Presently, cooperative work is supported on both local and
wide-area-based infrastructures [2]–[4].

Cooperation is usually achieved by defining a workflow that
defines the coordination of the various actors involved in the
work [5], [6]. A workflow engine orchestrates the coopera-
tion among the actors (software tools and components, and
humans). A repository of artifacts is also often available in
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CSCW environments to keep a shared global consolidated view
of the system state. Both the workflow engine and the artifact
repository are traditionally provided by a CSCW server [7].

The software process is a particular kind of a human-
intensive cooperative process that can be supported by a
computer-based environment. Software engineers cooperate in
this environment by developing parts of an application in
different stages (such as requirements specification, design,
implementation, and testing), by managing their activities, and
by synchronizing their work. A considerable amount of re-
search has been done over the past 20 years to study software
processes and the way they may be supported [8]. In partic-
ular, starting from the seminal work in [9], research focused
on understanding, specifying, validating, implementing, and
improving software process. Much work was also directed to
provide automated support to software process through process-
centered software engineering environments [10].

In this paper, we concentrate on a specific aspect that involves
cooperation in the software process, i.e., configuration manage-
ment. Configuration management is perhaps the activity where
automated process support has proved to be most effective [11].

Configuration management is a very critical activity in
software development. It is responsible for keeping the de-
velopment of software artifacts orderly and managed. Not
surprisingly, it is considered by process improvement method-
ologies, like the capabilities maturity model, as one of the
key practices that software development organizations should
establish in their improvement strategies [12].

The focus of this paper, however, is not configuration man-
agement per se. Rather, we wish to investigate how certain
assumptions on the distributed infrastructure affect the way
cooperative support in managing artifacts is provided. Tra-
ditionally, in fact, configuration management tools follow a
client–server architecture. The server is responsible for the
management of the artifacts. This approach is possible and
suitable in all cases where a reliable and permanent network
infrastructure is available to connect the participating nodes.
In this paper, instead, we investigate how configuration man-
agement can be supported through a much looser peer-to-peer
infrastructure. In fact, it is quite common that small groups
of developers cooperate to build software products by forming
highly dynamic virtual communities in which people change
frequently their connectivity status, i.e., not always being
able to access the network infrastructure. In other words, we
have to cope with a network of peers each of which contributes
to the overall logical artifact repository with the artifacts it
owns, and peers are not always online. Moreover, the network
connection is intrinsically intermittent, as in the case of wireless
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connections. Peers may dynamically join and leave the virtual
ad hoc community, as it typically happens in mobile scenarios.
They join it in impromptu meetings, where they exchange
data and synchronize their work. Each peer, however, should
continue to provide its functionality to the user even when it
is in a disconnected stage. The support infrastructure should
handle connections and disconnections in a seamless fashion.
Coping with intermittent connectivity is perceived as an impor-
tant feature of modern configuration management systems, as
witnessed by the fact that all recently developed products (for
example, SubVersion [13] and Monotone [14], see Section III
for further details and examples) provide some support to
disconnected operations.

This paper originated from MOTION, a research project that
was funded by the EU in the 5th Framework Programme [15].
MOTION is an e-work platform that supports collaboration
and distributed working methods for cooperative product de-
velopment and business management. Within MOTION, we
developed a middleware platform (PeerWare [16]) supporting
peer-to-peer document sharing. We then focused our research
on supporting cooperative software processes in mobile and
wireless environments. In particular, we investigated how soft-
ware configuration management can be provided in a peer-to-
peer fashion, and we developed the PEER-to-peer VERsioning
SYstem (PeerVerSy) tool to support the proposed approach
[17]. These ideas were experimented in the Virtual Campus
project sponsored by Microsoft Research at Politecnico di
Milano [18], [19]. The Virtual Campus project developed an
e-learning platform suitable for collaborative work. It gave us
the opportunity of experimenting with our PeerVerSy prototype
since some collaborative sessions involved small teams of
students developing software.

Although the research we report here focuses on decentral-
ized cooperation in software development tasks, our approach
has a much wider potential applicability. It applies to scenarios
where shared artifacts or documents are developed, manipu-
lated, and modified cooperatively [20] without the permanent
global support provided by servers but rather in a peer-to-peer
setting.

This paper is organized as follows. In Section II, we describe
the requirements a wireless and mobile environment imposes
on a cooperative support tool. In Section III, we discuss the
state of the art and related work. In Section IV, we describe
our distributed algorithm in more detail. The experiments done
to evaluate our approach are described in Section V. First,
we provide a quantitative assessment based on a simulated
performance model. Second, we introduce the results we ob-
tained by experimenting with a prototype tool in a teaching
environment. Third, we sketch the current work that focuses
on implementing our algorithm as a set of primitives on top of
the SubVersion system. Finally, in Section VI, we draw some
conclusions.

II. REQUIREMENTS FOR THE SUPPORT TOOL

In this section, we develop the requirements for a tool
supporting cooperation among nomadic users by focusing on
cooperation in software development. As we mentioned earlier,

our approach applies to other cases as well, where people
cooperate in developing a set of shared documents.

Software development can be viewed as a cooperative
process where software engineers exchange and jointly manip-
ulate software artifacts, such as requirements documents, test
data, module interfaces, module bodies, etc. It is crucial to
manage such artifacts in a flexible and efficient manner. This
is exactly the purpose of configuration management tools [11],
[21], which constitute the key logical components of a process-
centered support environment.

In recent years, software processes became increasingly
decentralized and distributed. However, software development
environments are still far from supporting these new forms
of highly dynamic and distributed virtual workgroups through
specific network-based services [22]. In particular (see also
Section III), the configuration management tools used by
developers to keep their work consistent are still based on
a client–server architecture [23], which requires repository
servers to be always reachable online. This assumption is
too restrictive in many cases because it assumes the network
infrastructure to be always available to support check-out and
check-in operations even in the frequent case that no concurrent
work is done on a particular item.

Configuration management tools support collaboration by
regulating the exchange and sharing of software artifacts. In
general, for each item, we can identify the role of the “owner,”
i.e., the individual who has created the artifact or who is re-
sponsible for controlling the status of the artifact. Other indi-
viduals may want to see, or need to manipulate, artifacts they
do not own.

A classical solution to coordination of people work relies on
accessing a shared “repository.” Shared artifacts are stored in
the repository, and whenever one needs to work on them, he or
she has to “check-out” the artifact from the repository. When
the work session is over, the artifact has to be “checked-in”
the repository again. According to this approach, the repository
becomes the centralized space of coordination among work-
ers, and check-out/check-in operations can be controlled by
enforcing agreement upon policies to ensure consistency of the
collaborative work.

In order to meet its requirements, the repository has to
be accessible by all the workers. This dictates a traditional
architecture that is based on servers that provide “repository
service” to the client nodes that are in charge of the work. Such
an architecture relies on two assumptions.

1) No offline cooperative work is permitted: Check-out
and check-in operations can be performed only while
a network connection is available to support access to
servers.

2) Servers are always alive: Repository servers are always
available online when check-in and check-out operations
are needed.

These assumptions are sensible when people work mainly in
their office, i.e., by using their workstation that is permanently
connected to the network. However, it is fairly common today
that mobile programmers work with their laptops, which only
have an intermittent network connection. Moreover, they would
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like to take advantage of the popular existing wireless facilities,
for example, to be able to establish a collaborative session dur-
ing a meeting without setting up a client–server infrastructure.

In a fully nomadic scenario, no fixed network topology can
be assumed. Ad hoc networking solutions may be used to
establish communication among nodes that may dynamically
join and leave the community. Machine disconnection is not
an exceptional case, but the normal way of operating: even by
assuming network connections to be reliable, some nodes may
deliberately choose to become offline.

The pure client–server paradigm, where some machines play
the role of service providers for other machines, cannot support
the required intrinsic dynamism of this situation. The main
disadvantage of client–server systems is that they are like little
“solar systems”: the entire application orbits around the main
server stars. When servers are not reachable, the entire system
is just a dead cold set of asteroids. As far as cooperative work
is concerned, this means that the entire service is blocked
until servers arise again to bring new life in the collaborative
universe.

Instead, a nomadic scenario requires an architecture where
users may be supported in their own work offline. Users are
equipped with personal computational devices called network
nodes (the terms “user” and “node” will be used interchange-
ably in the sequel). When disconnected nodes later rejoin the
network, some form of reconciliation with the online part of the
environment is necessary. In a decentralized and mobile world,
a peer-to-peer setting where all nodes are peers, i.e., they are
functionally equivalent and anyone could provide services to
any other [24], looks promising since it is able to achieve the
following advantages.

• Absence tolerance: The absence of a single peer, because
of a fault or a voluntary disconnection, can be compen-
sated by the presence of other peers.

• Ease of configuration: Because, in theory, each peer acts
both as a client and as a server, it can customize the
services it provides according to some commonly accepted
protocol without requiring a centralized supervision.

• Efficient use of resources: Popular resources (data and
services) can be easily replicated on several peers. Con-
versely, unused or obsolete resources could be eliminated
by the decision of the subset of peers that was interested in
them.

• Bandwidth economy: Network links toward servers are
typically the bottlenecks of client–server environments,
notably in cases where the number of nodes is high. In
a peer-to-peer setting, traffic is more homogeneously dis-
tributed on all edges, thus enabling a fair load balancing,
with respect to the bottlenecks implicit in a client–server
architecture.

In this paper, we explore how configuration management can
be accomplished in a highly mobile setting where disconnected
work frequently occurs. We were interested in an architecture
that was able to tolerate the absence (isolation) of any node,
possibly without the need of heavy configuration steps. There-
fore, we adopted a decentralized peer-to-peer architecture with
no centralized servers, where each group member keeps a copy

of a set of artifacts on his or her workstation. In particular, each
member keeps a copy of the artifacts he or she is responsible for
(“owned artifacts”) as well as a copy of other artifacts (owned
by other peers) he or she has checked out earlier.

Members of the software development team, provided with
laptops and some kind of wireless connection, may set up
impromptu meetings during which they can, for example, cor-
rect bugs on the fly and merge the patches in the baseline.
Developers may wish to check out the artifacts they need also
when the owners are not connected to them but rather other
peers that possess a copy of the artifact are available. This, of
course, requires that other nodes that checked out the artifact
provide support for a caching policy. Similarly, check-in should
be a transparent operation, which should not require knowledge
of who is online when the operation is executed. A check-in is
materialized in the workspace of the artifact’s machine when it
becomes available online. When new versions of configuration
items (artifacts) that are under one’s control become available
online, a notification is submitted to all interested peers to
enable them to get an updated copy.

Consider the following scenario. A developer D wants to
modify a source file f owned by Z, but Z is currently offline.
However, this is not a problem because X , who is available
online, has a recent version of f that can be downloaded by D.
In the meantime, Z is working (offline) on f , and she checks
in a new version f ′. When Z reconnects herself with the rest of
the system, a notification of the existence of f ′ is submitted to
the other peers. Now, both X and D are going to download the
new version of the document from Z in order to keep their local
repository up to date.

Summing up our requirements, the configuration manage-
ment tool should provide the following features.

1) Check-out: Every work session starts with this operation.
Configuration items (artifacts) should be accessible also
when owners are not connected thanks to suitable caching
policies through other peers.

2) Check-in: Every work session ends with this operation.
It should be possible to check-in items at any moment.
However, the actual check-in is physically carried out
only when the owner is available online. Since concur-
rent changes of a configuration item are possible, this
may generate conflicts. Conflict resolutions and merge
are performed when the owner is online. Offline and
online check-in operations are subject to the same policy
rules.

3) Change notification: When a peer joins the network, it
notifies the changes made to its own items since it last left
off to all interested peers. In this way, any cached copies
kept by such peers are marked as obsolete.

III. CURRENT TOOLS

Configuration management systems are still mainly based on
a client–server architecture where both the application and the
repository are stored in the same physical location.

Fig. 1(a) shows the traditional solution that is used in most
conventional configuration management systems, such as the
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Fig. 1. Configuration management system architectures.

widely used concurrent versions system (CVS) [25]. However,
nowadays, software production is becoming a more and more
distributed activity where the project teams are physically dis-
persed over many locations. This has fostered the design of
systems that provide distribution of the repository over multiple
sites. The solution usually adopted in distributed configuration
management systems is shown in Fig. 1(b): the repository is
distributed over geographically distinct servers, enabling the
distribution of data next to the actors of the software process.
However, from the user point of view, not much is changed
because, like in the previous architecture, they must connect to
a server to perform either a check-in or a check-out operation.
As examples of systems built over this architecture, we con-
sider two different tools, namely: 1) ClearCase MultiSite and
2) DVS.

Rational ClearCase MultiSite [26] is a commercial product
that supports parallel software development with automated
replication of the project database. With MultiSite, each loca-
tion has a copy (replica) of the repository, and at any time, a site
can propagate the changes made in its particular replica to other
sites. Nevertheless, each object is assigned to a master replica,
and in general, an object can be modified only by touching
its master replica. To relax this restriction, MultiSite uses

branches. Each branch can have a different master, and since
the branches of an element are independent, changes made
in different sites do not conflict. MultiSite does not provide
specific support to nomadic users whose online availability
varies in an unpredictable fashion. It requires the background
infrastructure of interconnected repositories to be accessible by
nodes to support any cooperative action.

DVS [27] is a research system that allows one to distribute
the configuration management repository over the network, but
it does not support the replication of information. Although
the absence of replication contrasts with our assumptions, our
system and DVS adopt a similar overall architecture, where
configuration management features are implemented on top of
a middleware layer. In fact, DVS has been implemented on top
of network-unified configuration management (NUCM) [28].
NUCM defines a generic distributed repository and provides
a policy-neutral interface to realize configuration management
systems.

Although these approaches satisfy the requirements of ge-
ographically distributed enterprises, they are not suitable for
small groups of mobile developers. The next step lies in aban-
doning the central repository and adopting a purely peer-to-peer
distributed architecture, as shown in Fig. 1(c).
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BitKeeper [29] adopts a solution that is halfway between
the multiple-server architecture and a fully distributed one. The
basic idea is that each user can clone a piece of repository in
the local machine such that the work may proceed without the
necessity of being connected to the main repository. Indeed,
each replica is a fully functioning repository, and users can
freely check-in and check-out documents also while they are
disconnected. BitKeeper includes commands to synchronize
the contents of a replica and to propagate changes from one
repository to another. Such primitives foster the creation of a
hierarchical structure (a tree), where changes propagate upward
from the leaves (representing user workspaces) to the root (the
main repository), and up-to-date versions of artifacts propagate
down in the opposite direction. Although this approach is very
flexible, it is not easy to apply in a peer-to-peer setting where
there is no fixed hierarchy between nodes.

An interesting tool that overcomes this restriction is Code
Co-Op [30]. Code Co-Op is a distributed versioning system
that replicates project data on each computer. Thus, check-ins
and check-outs are possible also when people are offline. In
Code Co-Op, exchange of information among members of the
team occurs separately from other sources of control activities.
E-mail is used to share change scripts (it is important to note,
however, that e-mail is based on a fairly complex protocol
that is based on a client–server architecture). During check-in,
the file that has been modified locally is compared with some
locally available reference version of the same file. In order
for other members of the project to be able to interpret the
change script, they all have to own the same reference version
of the file. This means that, before a given version of a file may
become a reference version, there has to be consensus among
all the voting members of the project. Indeed, in Code Co-Op,
users are divided into two different groups, namely: 1) voting
members and 2) observers. The former group participates in
the distributed consensus process, and its acknowledgment is
required to promote a new reference version. Observers are not
involved in such a process. Since reaching consensus could take
a long time (especially when a member is offline for a while),
Code Co-Op allows users to work on intermediate versions of
documents. Of course, this may require a lot of work to resolve
conflicts if the intermediate version will be rejected.

Open-source software development is often a special case of
a distributed effort. Several large projects like the Linux kernel
[31], the Apache web server [32], or the Mozilla web browser
[33] involve large geographically dispersed and loosely coupled
workgroups [34]. Group members normally know each other
only by their e-mail addresses or IRC nickname. These projects
mainly rely on server-based coordination tools because they
want their collaboration to be Internet wide, and the server-
based solution is the more efficient one if a team can provide
a server machine (or a set of machines) that is available 24 h
per day. However, in some cases, the pure server-based solution
was considered to be too rigid: in fact, the Linux development
project adopted the BitKeeper tool1 because small groups of

1With a lot of discussion among free-software advocates, since it is licensed
with closed-source conditions. A recent change in BitKeeper license has forced
the Linux community to develop an open-source clone called GIT.

developers working on specific modules required more flex-
ibility in the availability of the repository. As we discussed
before, BitKeeper, although a server-based system, introduces
some peer-to-peer features because it makes it relatively easy to
duplicate subsets of a repository—where independent develop-
ment could take place—while giving developers tools to keep
this copy in sync with the main one.

Monotone [14] manages three different types of storage,
namely: 1) a central (and remote) database; 2) a database local
to every user; and 3) a working copy of the artifacts. The local
database acts as the “switching point” for communication with
remote databases by exploiting an interactive protocol for syn-
chronizing data over the network: a “pull” operation copies data
from a remote database to a local database; a “push” operation
copies data from a local database to a remote database; and a
“sync” operation copies data both directions. In each case, only
data missing from the destination are copied. The presence of
the local database provides some support for offline operations,
but pull, push, and sync operations are possible only when the
remote server is available. An evolution of the classic CVS is
SubVersion [13]. It exploits the same strategy: a local database
enables some offline work. SubVersion primitives were also
used [35] for building a configuration management tool able
to deal with mirrored repositories. These tools are especially
suitable for open-source development, where it is often the case
that a big part of the code base is developed by some upstream
author, and a user customizes and evolves just a small fraction,
while he or she wants to keep his or her branch in sync with the
upstream part.

Interesting research work was done in the context of dis-
tributed file systems. For example, the Coda file system [36]
supports disconnected operations by caching remote mounted
partitions. However, it is server based: several clients can work
on the partitions exported by a central server even when a
connection to the server is not available: a reconciliation step
is performed when connectivity is reestablished, but Coda does
not support collaborative modification or versioning of artifacts.
In general, solutions at the file system level provide support on
sharing data among partially connected nodes; thus, they could,
in principle, be used to build collaborative tools on top of the
virtual data structure they provide. As we are going to explain
in Section V-B, in our approach, we used a middleware to
this end.

IV. IMPLEMENTATION STRATEGY

To support truly nomadic scenarios (as outlined in
Section II), we decided to base our system on a pure peer-
to-peer architecture where there are no servers and the whole
repository is directly distributed over the users’ devices [see
Fig. 1(c)].

In designing such a system, we can distinguish two different
classes of problems. The first consists of managing in an
efficient and automatic way the physical distribution of data
among different peers. The second class is instead related to
the versioning mechanism itself and includes the problem of
document replication, the management of concurrent access,
and the conflict resolution.
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Fig. 2. Distributed repository of configuration items.

Similar to the approach adopted by DVS [27], we decided
to delegate the data distribution problem to an underlying
middleware layer. In this section, we analyze the versioning
problems, while the middleware architecture is going to be
briefly introduced in Section V-B.

In a pure peer-to-peer environment, configuration items are
distributed among all process participants and stored inside
their local repositories Ri, as shown in Fig. 2. The following
two different architectural choices are possible:

n⋂

i=1

Ri = ∅ (1)

n⋂

i=1

Ri �= ∅. (2)

Choice (1) yields a system with no replicated information.
This solution allows for efficient implementations (see, for
example, DVS [23], [27], [28], [37]) and eliminates the risk of
producing inconsistent replicated information. However, items
can be accessed only if the unique host that provides them is
online, and this does not satisfy our requirements about the
check-out operations.

In our system, we adopted choice (2) because replication
enables cooperation also when some nodes are not available
online. However, this is achieved at the expense of making the
conflict resolution among different versions of configuration
items more complex. To address this issue, we adopted a
strategy similar to the one used in the management of the
distributed database of the domain name system (DNS) [38], in
which data regarding associations between IP numbers and host
names are replicated on several DNS servers. Each DNS server
records some associations known with certainty (“authorita-
tive” associations) and some others simply as remembered from
previous accesses (“cached” associations). Whenever a DNS
server gets a request for a host for which it cannot give an
authoritative answer or that is not contained in its cache, it
queries the network, possibly ending up asking the authoritative
server, which knows the correct answer.

The philosophy of our solution is also similar to the
one adopted by Code Co-Op. However, as we discussed in
Section III, its approach is based on e-mail (or other forms of
file exchange such as floppy disks or FTP connections) to share

scripts. This requires users to agree on a protocol and to set
up the proper infrastructure. Our system aims at being more
flexible: in particular, we want to be able to share items also if
the sender does not know the IP address of all the possible re-
cipients. The main advantage of the approach adopted by Code
Co-Op is that its way of exchanging messages is more scalable
in WAN settings than a peer-to-peer middleware. However, on
a smaller scale, our solution requires far less infrastructure.

Moreover, the algorithm adopted by Co-Op is quite restric-
tive because for each new version of an artifact it requires
a global consensus from all the participants. To mitigate the
problem, Co-Op introduced the idea of voting members and
observers, as we saw. Our algorithm has no such restriction
because the process of promoting a new version involves only
two peers, namely: 1) the author of the version and 2) the
current authority of the document.

In our approach, in fact, each peer is the “authority” for a set
of items, and the copy of an artifact owned by the authority is
the “master copy.” Peers can keep a local copy (i.e., a “replica”)
of the documents for which they are not the authority to allow
users to work on them even when the authority is not reachable
or when the peer is disconnected from the network. In fact, a
user can perform both check-in and check-out operations from
the local copies of a document. The only difference between
the master copy and a replica is that a check-in of a new version
becomes definitive and available for all users only when the
authority authorizes the changes and updates the master copy.

Initially, the authority role for a document is assigned to
the peer that introduces the first version of the document. The
binding between authorities and peers, however, can be changed
dynamically in order to improve the overall performance of
the system. For instance, consider a simple scenario where the
node X is the authority for the document d, but node Y was
responsible for the last ten check-ins. In this case, Y is clearly
the node where most of the work on the document is performed,
and thus it may be reasonable to promote it to become the new
authority of d.

Whenever a peer joins the online community of peers, a
reconciliation step is performed. More specifically, when the
node X connects, for each item i for which X is the authority,
X notifies all interested peers if a newer version of i is available
(the same happens when a new checked-in copy is accepted by
the authority). In this case, all the peers that own a replica of i
should contact the authority to update their local copies.

We can now examine what happens when a user tries to
check-out or check-in a document. Suppose that peer X issues
a check-out for a document d whose authoritative peer is
A (�= X). Two cases may occur.

1) d is present in X’s local repository. In such a case, the
check-out operation delivers a copy of d from the local
repository.

2) d is not present in X’s local repository. In such a case,
a network search is issued to retrieve a valid copy. If no
copy is found, the check-out operation fails. Otherwise,
the system creates a new local replica of the document
and then checks-out a copy of the artifact from the local
repository like in the previous case.
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Suppose that a peer X issues a check-in request for a new
version of a document whose authoritative peer is A (�= X).
We distinguish two cases.

1) A is reachable by X . A check-in proposal is notified to
A, which can either reject it (if in the meanwhile a newer
version was released) or accept the proposal to become
the new “official” version of the document.

2) A is not reachable by X . A check-in proposal is stored
in the local repository hosted by X , and it will then
automatically notify A when the node becomes available.
At that point, A can reject the proposal or commit to
making it persistent in its local repository as a new master
copy. If the item owned by A is newer then the one
proposed by X , a conflict arises, and X’s proposal will
be refused. In this case, it is X’s responsibility to resolve
the conflict and submit a new version.

A solution based on this strategy offers several advantages.

• Usability: The master copy of each document is kept by
the peer where the document is mostly used. This is very
useful because when a user works on a document whose
master copy is kept in its local repository, he can work
like if he was the only developer, without the need of
continuously connecting to the network to check if a new
version of the document has been released by another peer.

• Flexibility: Each peer can control the amount of replicated
data, from the simple case where nothing is replicated to
the case where the whole repository is replicated on all
peers. Thus, users can choose which documents have to be
replicated on the ground of their needs.

• Configurability: The algorithm responsible for the distrib-
ution of authority roles can be easily changed, thus allow-
ing users to choose their preferred policy. The authority of
a document can be assigned both statically or dynamically.
A static binding can be used, for example, when a user
want to keep control on the versioning of some particularly
important documents. Also, the client–server approach can
be obtained as a special case, just assigning the authority
of all the artifacts to a computer always connected to the
network. Nevertheless, a more flexible solution consists of
using some algorithm to dynamically move authority from
one peer to another, trying to keep the master copy of each
artifact on the node where it is likely to occur the next
check-in operation (for instance, one may set a policy that
assigns the authority of a document to the user responsible
for the majority of the past five versions).

V. APPROACH EVALUATION

Assessing the practical validity of a distributed cooperative
tool is not an easy task because it requires a throughout analysis
of many different aspects. To go beyond a mere proof-of-
concept experiment, we decided to split the evaluation of our
solution into three different phases.

In the first phase, we focused on analyzing the algorithm
itself without taking into account any network or implemen-
tation detail. For this purpose, we designed an analytical model
based on colored Petri nets to simulate the performance of our

approach (in terms of conflict and check-in rates) and compare
them with the reference values obtained with a traditional
client–server architecture.

In the second phase of the evaluation, we implemented our
algorithm in a prototype application named PeerVerSy. We then
used this tool in a controlled environment, set up in the context
of the Virtual Campus project. The objective, here, was twofold,
namely: 1) to try whether it was possible to actually implement
our algorithm in a working tool and 2) to test on the field if a
totally distributed architecture can present some real advantage
in a realistic experiment.

Finally, the last step would consist of testing our approach
in a real-world experiment. Unfortunately, it is especially hard
to design and implement experimental assessments in realistic
industrial environments. Moreover, we could not use PeerVerSy
in industrial settings because of the obvious limitation of a
prototype application (such as the total lack of security and
the inadequate reliability of the document repository). Thus, we
decided to reimplement the PeerVerSy algorithm as a collection
of scripts working on top of an existing versioning system.

In our evaluation, we focused on the algorithm, thus neglect-
ing any performance assessment. In fact, bandwidth and latency
depend basically on the middleware we used to dispatch data.
The results of our evaluation efforts are reported hereafter.

A. Evaluation With a Model-Based Analysis

Intuitively, our protocol provides some advantages over a
server-based one. Imagine, for example, the case in which two
nodes are isolated from the rest of the group: even if they cannot
connect to a central server machine, they could connect with
each other. With our approach, if one of the two is the authority
of document D, every configuration management operation is
still available. If, instead, both peers are nonauthoritative with
respect to D, their replicas can be used to perform check-outs,
and check-ins can be cached, waiting for the next opportunity
to finalize the operation when the authority becomes available.
In this way, people collaboration may be oblivious about actual
network topology. Of course, when the number of writers is
high, we expect an increase in the number of conflicts. In fact, in
any server-based protocol, the server works as a shared point of
coordination, and if one can assume its permanent availability,
it may be used to ensure that no one works (i.e., modifies
artifacts) concurrently with another. However, “optimistic” pro-
tocols [39] such as the one normally used by CVS [25] do
not force any locking policy, and conflicts are still possible.
Therefore, in order to reduce conflicts, workers are advised to
do an update before starting their work, if such an update is
possible (i.e., they are able to reach the server).

Since the number of nodes, their working profile, and their
connectivity profile intuitively impact on the performance of
a server-based or a peer-to-peer protocol, we were inter-
ested in a comparative assessment of the two architectures.
Bellettini et al. [40] describe an analytical model of both the
PeerVerSy and the CVS protocol with stochastic well-formed
nets. Interested readers are invited to refer to [40] and [41]
for details about the model and complete results. The model
abstracts away the implementation details in order to focus
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on the check-in protocol. Moreover, network properties as
bandwidth and partial connectivity are not considered: peers
are considered to be online (able to communicate with others)
or offline (able to manage only local data). The analysis (per-
formed by using the GreatSPN tool [42]) took into account the
following parameters:

1) The number of workers (np). The model was analyzed
with teams up to 12 members because of two concomitant
reasons. First, our cooperative approach targets small
groups of peers. Second, even so, the analysis requires
several days of CPU time on a GNU/Linux machine,
equipped with an Intel Xeon 2.4 GHz and 1 GB of
main memory, and produces an exceedingly large amount
of data.

2) The number of documents under revision control (nd).
We considered a model with one, two, and three
documents.

3) Working profile (W ). The model assumes that workers
repeat cycles in which on average they work (modify
a single artifact) two units of time and they are idle
for a unit of time. When a conflict is discovered, an
additional unit of time is spent in the merge operation.
The working profile of authorities may differ from the one
of generic workers: one can experiment what happens if
the authority works a lot (with respect to other workers)
on the document that it owns or the other way around.

4) Online profile (O). Every member may be online or
offline. This simplification is needed in order to abstract
on the network topology. The server machine (in the
server-based model) is assumed to be always online, and
a worker can reach it if and only if its status is online.
A peer A can reach another peer B if and only if the status
of A and B is online. We characterized the online profile
of a model with the following two parameters.
a) Online ratio (OR). How much time, on average, a

worker is online against total time.
b) Connection periodicity (OP ). How long (in time

units) is an online/offline cycle. This represents the
dynamism of the changes in the online status. For
example, OP = 4 means that if a worker is online
half of its time (OR = 50%), online sessions last on
average two time units and offline sessions two time
units; OP = 2 means that if a worker is online half of
its time (OR = 50%), online sessions last on average
one time unit and offline sessions one time unit.

The analysis focused on three metrics.

1) Average successful check-in throughput per worker per
document. This measures how many successful check-ins
were made by each worker during the simulation per time
unit: obviously, the higher the better. In the peer-to-peer
setting, we separately considered nonauthoritative peers
and authority since one of the main advantages of the
protocol is that the authority is virtually always able to
perform a successful check-in operation.

2) Average failed check-in throughput per worker per doc-
ument. We count as failed check-in any time a conflict

Fig. 3. Check-in performance (on y axis, the throughput of the check-in
transition).

Fig. 4. Client/server versus P2P check-in performance (on y axis, the rate of
successful versus failed check-ins).

occurs, and the user needs to merge the changes and
resubmit another check-in proposal.

3) The rate of successful check-ins. Obviously, the higher
the better. However, this is significant only if work is
actually done: if nobody is working and only one check-in
is performed, the success rate will be 100%, independent
from the strategy used.

Fig. 3 shows the trend of the throughput of successful and
failed check-in operations against an increasing number of
workers (expressed in number of check-in transitions fired in
the time unit). The number of successful check-ins decreases
with a higher number of workers both for the authority and
the peers (data consider only one document); correspondingly,
the number of failed check-ins increases. While the number of
peers working on a single document heavily affects the average
number of failures for normal peers, the authority failures
increase very slowly with the number of peers.

Fig. 4 shows a performance comparison between a user
in a client–server architecture and a user in our peer-to-peer
solution: the diagram depicts the rate of successful check-ins
versus failures. Obviously enough, a peer acting as the authority
of a document always performs better than the average client,



1106 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 36, NO. 6, NOVEMBER 2006

since a normal peer has less chances to get a successful check
in. Authority check-ins are almost always accepted, since they
fail only when two or more peer check-ins were accepted
during the work activity of the authority. When the workers
on a single document are three or more, the average peer get
more failed check-ins than successful ones. In a client–server
setting, this happens with six or more nodes (a rate of 0.5
means that the number of successful check-ins is equal to
the number of failures). However, when a team is working
on several documents, a peer-to-peer setting is able to exploit
the ability of distributing the authority responsibility, thus the
average success increases. Moreover, a “good” choice of the
authority who owns an artifact (ideally, the one who works most
on it and who is frequently online) could improve performance
figures even more: our model shows that it is possible to get
results with peers and authorities acting according to different
working profiles. The picture shows the results obtained in the
most trivial symmetrical case, without exploiting any smart
strategy of authority assignment.

In a more realistic setting, the dynamic redistribution of
authorities should assure that most of the work is done by
authoritative peers, where our approach has a clear advantage
with respect to a centralized architecture. Moreover, the re-
duced performance of normal peers is still quite acceptable
(even with an increasing number of peers) given that they
gain the flexibility of doing cooperative actions also when
offline.

B. PeerVerSy: A Prototype Application

In the second step of our evaluation, we experimented the
effectiveness of our solution in an educational environment.
In this phase, our distributed approach was used to manage a
number of projects developed in a software engineering class
for undergraduate students at Politecnico di Milano.

To implement the strategy described in Section IV, we de-
veloped a prototype application called PeerVerSy. PeerVerSy
is a serverless configuration management system that allows
the repository to be distributed and replicated over different
nodes of the network in a peer-to-peer fashion. In addition
to the distributed repository, the application provides other
cooperative software development features, like management of
bug lists and to-do lists.

PeerVerSy is built on top of PeerWare [16], [43], a mid-
dleware suitable for peer-to-peer settings developed within our
group at Politecnico di Milano. PeerWare provides the abstrac-
tion of a shared “global virtual data structure” (GVDS) built out
of the local data structures contributed by each peer. PeerWare
takes care of dynamically reconfiguring the view of the GVDS
as perceived by a certain user, according to the current con-
nectivity state. The GVDS managed by PeerWare is organized
as a graph composed of nodes and documents, collectively
referred to as items. Nodes are essentially containers of items
and are meant to be used to structure and classify the documents
managed through the middleware.

Precisely, nodes are structured as a forest of trees, with dis-
tinct roots, which most likely represent different classifications
of the documents contained into the data structure. Within this

Fig. 5. Example of the GVDS managed by PeerWare.

graph, each node is linked to at most one parent node and
may contain different children nodes. Standalone documents
are forbidden; documents are linked to at least one parent node
and do not have children. Hence, a document may be contained
in multiple nodes. Nodes are labeled, and two nodes may have
the same label, as long as they can be uniquely identified. Nodes
and documents are, in fact, identified by path names starting
from the root node label, as it happens in conventional file
systems.

At any time, the local data structures held by each peer are
made available to the other participants as part of a GVDS.
This global view is structured in the same way as the local
data structure but its contents are obtained by merging all the
local data structures belonging to the peers that are currently
connected, as shown in Fig. 5.

Changes in connectivity among peers determine changes in
the contents of the GVDS, as new local data structures may be-
come available or may disappear. The reconfiguration, however,
takes place behind the scenes and is completely hidden to the
peers accessing the GVDS.

There is a clear distinction between operations performed
on the PeerWare local data structure and on the whole GVDS.
While hiding this difference would provide an elegant unifor-
mity to the model, it may also hide the fundamental difference
between local and remote effects of the operations [44].

The semantics of a global operation can be regarded as
being equivalent to a distributed execution of the corresponding
operation on the local data structures of the peers currently con-
nected. In particular, the atomicity property can be assumed to
hold for local operations, but it is an impractical assumption in a
distributed setting. Hence, they are not guaranteed to be atomic.
They only guarantee that the execution of the corresponding
operations on each local data structure is correctly serialized
(i.e., it is executed atomically on each local data structure).

The operations provided by PeerWare together with the
publish/subscribe engine on which PeerWare itself is based (the
distributed event dispatcher JEDI [45]) provide the framework
needed to implement our configuration management opera-
tions. By using PeerWare, we abstract away from the actual
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Fig. 6. Architecture of PeerVerSy.

network topology and perform actions on online items without
knowing where they are stored.

The prototype application is built on top of PeerWare as
shown in Fig. 6.

The local repository is the local space where each node stores
its documents (both master copies and replicas). Each artifact is
composed of the data and metadata associated to all the versions
of the document. The repository is managed by PeerWare in
order to provide to each node a virtual view on the content of
all the local repositories. This allows users to read documents
also if they do not own a local copy in their data spaces.

The core engine provides a wide set of functionalities to
check-in and check-out documents, to post messages into the
bug list, to define baselines, to add new artifacts to the reposi-
tory, and other CM-related operations. The engine relies on the
public subscribe services provided by the middleware layer to
send and receive messages related to the notification of new
versions of artifacts.

We decided to implement into the engine only the features
that are not context specific. Other functionalities are provided
by external plugins that are dynamically loaded and executed by
the engine only when they are needed. There are several types
of component, such as components used to validate the data
introduced into the repository, components used to differentiate
and merge documents, and components simply used to execute
an action in particular situations. A component can also be
associated with a particular type of artifact, for example, it is
possible to select a MergeComponent that will be loaded to
resolve conflicts between Java source files.

A special type of component is the one responsible for
managing the distribution of authorities between peers. These
components are selected by the project manager to establish a
project-specific process. By writing a customized component,
it is possible to implement the policy that is best suited for a
particular software process.

Although PeerVerSy provides a quite complete set of func-
tionalities, it was essentially designed to evaluate the feasibil-
ity and usability of a peer-to-peer configuration management
system in a controlled environment. The case study consisted
of a software engineering class involving 20 students equipped
with tablet PCs and a wireless LAN card. During the course’s
laboratory sessions, we required students to collaborate in small
teams to develop a software project. Each group of students

worked together in a laboratory with a wireless network in-
frastructure once a week for four weeks. When the laboratory
session was over, they were supposed to continue their work
independently at home. Moreover, they could meet together
on campus or whenever and wherever they wanted, setting up
an “ad hoc” network to synchronize their local repositories
and to exchange the latest versions of the artifacts they were
working on.

At the end of the class, we compared the work experience
of these students with the rest of the class that developed the
same projects using CVS. We found that the tool was extremely
attractive from the instructor perspective, who did not need to
set up a server-based configuration management tool. Security
regulations of the laboratory impose a high cost in setting up
a central server to be accessed by many students. Instead, our
solution allows students to use their own machines, installing
and configuring the program under their own responsibility.
We also received positive feedback from participating students,
who were happy to be able to freely cooperate whenever and
wherever they wanted and could also work in a disconnected
fashion when necessary. However, we were not able to evaluate
the impact of the new tool on software development in a more
objective, let alone quantitative, way. Since the students were
not sufficiently skilled and were not used to work cooperatively,
we did not get a relevant feedback from this testing phase.

C. Evaluation in a Real Scenario

The previous experiment was useful in sustaining our hy-
pothesis about the feasibility of a totally decentralized con-
figuration management approach. Moreover, analytical results
proved that for small groups of developers, our totally distrib-
uted protocol may also present advantages with respect to a
client–server architecture. Unfortunately, PeerVerSy, our first
implementation of the algorithm, lacks the robustness required
by a commercial product (e.g., it does not provide any security
and authentication facilities), and its limitations make it difficult
to promote the tool in a real environment. Developers are reluc-
tant in putting their documents in the hands of a new prototype
SCM system, and it was not our purpose to develop from
scratch a new product to compete on the market. For this reason,
we are now reimplementing the PeerVerSy algorithm as a set
of scripts that can be applied on top of an existing SubVersion
[13] repository. This solution allows us to focus only on the
distributed algorithm, letting the document management to the
underlying well-known and well-tested product. In addiction,
the use of external scripts makes it possible to disable the
distributed features in any moment, coming back to the plain
centralized repository.

The scripts running on each host are responsible for en-
forcing our policies during check-in and check-out operations
and of exchanging messages with the other peers in order to
maintain the local repository up to date. As far as the network
communication concern, we decided to substitute PeerWare
with a more lightweight and scalable system named Reds
[46]. Reds is a highly configurable framework that can be
used to build publish subscribe applications for large dynamic
networks. Thus, nodes that own a replica of an artifact can
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subscribe themselves to receive messages that are published by
the document authority whenever a new version becomes avail-
able. Moreover, real-world wireless connections suffer from
unannounced disconnections, and the new middleware provides
support for them.

We believe that such an unintrusive implementation will
attract the interest of many people, free to try the advantages
of a totally distributed configuration management system with
their preexisting repositories.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have discussed a novel approach to support
cooperation for small groups of nomadic developers. These
groups can exchange data, but they can rarely rely on the
availability of a centralized repository server.

We presented a solution to support nomadic workgroups by
allowing any online hosts to be able, in principle, to cache the
artifacts and make them available for use even if the hosts that
own them are temporarily disconnected. Of course, we pay for
this flexibility in terms of a more sophisticated coordination
effort.

As in all cooperative processes, human factors play a very
important role in our system. However, other support systems
for distributed cooperation (like Co-Op) require going through
complex consensus building stages. In our case, instead, reach-
ing consensus about modifications is restricted to an interaction
between two individuals: the owner of the artifact and a user
who modified it. Furthermore, our system allows the user who
more frequently modifies an artifact to be promoted to the
owner role. This further reduces the need for negotiation among
team members as needed in highly dynamic context.

The approach we described in this paper has been imple-
mented in a prototype as part of our efforts in developing a
suite of software process support tools that fit the needs of
educational environments in which students are equipped with
mobile devices and form dynamic virtual communities. The
approach has been validated informally in practice and modeled
with stochastic Petri nets in order to assess the performance
we should expect. We are currently refactoring our tool as a
collection of scripts on top of a full-fledged versioning system
(SubVersion). This should make it possible to use the tool
(now providing all the features of a real-world configuration
management tool) in production environments.
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