

On the Effectiveness of Risk Prediction Based on Users Browsing Behavior

Davide Canali*, Leyla Bilge, Davide Balzarotti

EURECOM Software and System Security Group, France Symantec Research Labs, France

* now at Lastline, Inc.

Motivations

Understanding the reasons why certain users are safer than others on the web

Is there any correlation between browsing behaviors and user risk?

- Previous studies used survey-like approaches, and studied infections on end-user laptops (Lévesque et al, 2013)
- Simple indicators given by the study of the Australian threat landscape by TrendMicro and Deakin University
- Can we build risk profiles for web users?
 - User profiling has been mostly studied in the area of recommender systems
 - Think of Cyber-insurance schemes...

Cyber Insurance Scenario

EURECOM -

The concept of "cyber insurance" has been around for several years, however

- Very little empirical data on incidents
- Companies do not want to reveal their security breaches
- No standardized cyber insurance prices and policies

Little has been done to know which factors affect risk

- Unlike traditional insurance (car, house, etc.)

Dataset

Telemetry data from Symantec

3 months of browsing data (August 1 - October 31, 2013)

- HTTP requests only
 - » Performed voluntarily, within a browser (no automatic requests)

EURECOM —

Anonymized user information

202M URL hits (38M distinct)

from 160K users, who:

- opted-in to share their browsing histories
- visited at least 100 pages during the observation period

User Risk Categories

EURECOM

- Norton Safe Web
- Google SafeBrowsing
- Public domain blacklists

Following a classical insurance approach, users are **categorized** based on their **past experiences**:

Safe Uncertain At Risk

User Risk Categories

- Norton Safe Web
- Google SafeBrowsing
- Public domain blacklists

Following a classical insurance approach, users are **categorized** based on their **past experiences**:

Uncertain At Risk

EURECOM

User Risk Categories

- Norton Safe Web

Safe

- Google SafeBrowsing
- Public domain blacklists

Following a classical insurance approach, users are **categorized** based on their **past experiences**:

Uncertain

EURECOM

Analysis

A quick look at average values...

EURECOM ·

- Number of visited URLs
 - safe users: 743 (daily avg: 17)
 - at risk users: 2411 (daily avg: 37)
- Distinct visited URLs
 - *safe* users: 231 (daily avg: 6)
 - *at risk* users: 874 (daily avg: 14)
- Percentage of visited malicious URLs
 - uncertain users: 0.14%
 - at risk users: 0.71%

Analysis Daily trends

EURECOM

- Less web hits during weekends
- Increase in the percentage of malicious URL visits during weekends (+10%)

• People surf less at night

- But percentages of malicious hits at night are higher (+6.5%)

• At risk users are less active in the morning and more active at night, compared to safe ones

Geographical Trends

Country	Users	$\%$ users $at \ risk$	Average hits on		Visited Pages			# lan-
			malicious URLs	blacklisted domains	total	distinct	domains	# lan- guages
US	67967	20.8	2.2~(0.22%)	2.0~(0.15%)	1250	422	194	3.6
UK	26204	17.8	1.5~(0.16%)	$2.0 \ (0.16\%)$	1097	379	183	4.2
JP	16556	10.0	1.1 (0.05 %)	3.1~(0.14%)	1989	641	205	3.8
CA	6798	20.9	2.0 (0.22%)	$2.4 \ (0.17\%)$	1214	387	186	3.8
AU	6107	16.4	1.5~(0.17%)	1.5~(0.15%)	1007	343	173	3.7
DE	5606	22.3	2.0 (0.20%)	2.6~(0.23%)	1042	366	192	4.9
FR	4566	29.1	2.8~(0.27%)	3.3~(0.27%)	1127	390	209	4.5
NL	3415	15.9	$1.1 \ (0.12\%)$	2.3~(0.21%)	1009	361	195	5.2
ES	1842	28.3	2.4 (0.23%)	3.9 (0.33 %)	1121	391	200	5.7
SE	1755	15.3	$1.9 \ (0.17\%)$	1.9(0.14%)	1049	327	167	6.4
IT	1665	27.4	$1.8 \ (0.18\%)$	7.0 (0.69%)	1097	350	186	5.4
BE	1454	21.3	2.2 (0.21%)	2.5~(0.20%)	1126	396	208	5.5
NO	1208	11.8	1.1 (0.10 %)	2.5~(0.11%)	1219	341	166	6.1

Geographical Trends

EURECOM ·

Japan: lowest percentage of malicious hits and at risk users

Geographical Trends

EURECOM.

France, Spain, Italy: percentages of at risk users almost 3x higher than Japan

for user profiling

EURECOM -

- How much a user surfs the web
- In which period of the day a user is more active
- How diversified is the set of visited websites
- Computer type
- Which website categories the user is interested in
- Popularity of visited websites
- How stable is the set of visited pages

for user profiling

How much does a user surf the web?

- Basic stats
 - » Total number of web requests
 - » Number of distinct URLs
 - » Number of requests per day
 - » Number of distinct URLs per day

In which period of the day is the user more active?

- Percentage of hits during night, day, and evening
 - » Night: 00 am 06 am
 - » Day: 06am 7pm
 - » Evening : 7pm 00 am

for user profiling

How diversified are the visited web sites?

- Number of distinct domain names
- Number of distinct TLDs
- Number of languages of the visited web pages
 - » Coverage: 77% overall

In which web categories is the user more interested?

- Websites categorized in 11 categories
 - Heuristics: Business websites, Adult, Communications and information search, General interest, Hacking, Entertainment and leisure, Multimedia and downloading, Uncategorized
 - » Blacklists: One-click hosting, Porn sites, Bittorrent websites
 - » Coverage: 76% overall, 96% of Alexa top 10,000

for user profiling

What are the **computer characteristics**?

- Office computers or home computers
 - » Profiles that browse only during week days are likely to be office computers
- Is the computer mobile?
 - » Number of different IP addresses the user is browsing the Internet from
 - » Number of different ISPs
 - » Number of different countries

How **popular** are the visited **web sites**?

- Percentage of domains whose TLD is .com, .org, .net
- Percentage of domains in the Alexa Top 100
- Percentage of domains in the Alexa Top 1M

for user profiling

How stable is the set of visited web pages?

- To model the variability of the user's browsing activity
 - » Are users who browse always the same web pages less at risk than others?
- Measures of:
 - » the daily and overall increment in the number of websites visited by the user
 - » the daily and overall percentage of websites visited, which had been visited by the user in the past

Feature Correlations

- Correlation with being at risk varies from very weak to moderate
- Some of the features showing the highest correlation:
 - Number of visited TLDs that are not .org, .net, .com
 - Number of URLs, domains, and hostnames visited by a user
 - Percentage of visited adult websites

Predictive Analysis

EURECOM

- Can we predict whether a user is at risk or not?
- Experimented with a range of prediction models (SVM, Bayesian classifiers, decision trees, logistic regression)
 - Chosen Logistic Regression
 - » Good for features with continuous or discrete values
 - » Does not explicitly require uncorrelated features
 - » Achieved the best accuracy and FP rates in our tests

Predictive Analysis

Logistic Regression classifier

- Area under ROC=0.919
- 74% detection with 8% FP (safe users misclassified as at risk)
 - Applied to Japanese users only: 73% detection, 1.9% FP
- Performances in line with classification algorithms for financial risk prediction

Interesting Result

- Ability to **predict the users** *at risk* by means of machine learning, by
 - looking only at HTTP requests
 - without any an access to the user's computer
- Could allow companies or ISPs to silently profile their users
 - ...and calculate aggregated risk factors at a company level
- The accuracy of the system is sufficient to be used in a risk prediction scenario
 - Simple but effective way to implement a cyber-insurance mechanism
 - » rewarding users who show a safe browsing profile

Conclusions

- The study confirmed some known trends:
 - The more a user surfs the Internet, the higher her risk of being exposed to cyber attacks
 - The category of the visited web sites does not seem to matter much
 - Few categories are however associated to higher risk (e.g., adult web sites)
- Novel findings:
 - Although not perfect, users' web browsing profiles can be used to predict users that are more likely to be at risk
 - » Having access to users' "social features" could help strengthening the profiles
 - Cyber Insurance is a new, attractive area to be researched in depth

Thank you

?

For further questions, suggestions, comments: canali@eurecom.fr