Telephony Fraud and Abuse

Merve Sahin
sahin@eurecom.fr
Background
Telephony Networks – Quick history

• 1870s: Plain Old Telephone System (POTS)
 - Enabled by transmission of voice over copper lines
 - Used **in-band signaling**: Signaling (call control) information and voice/data are transmitted on the same channel
 - Switchboard operators were connecting calls (enabling social engineering attacks)
 - Operators were mostly state-owned monopolies
 - Access to the network was restricted to operators, which were 'trusted' by default
Telephony Networks – Quick history

- 1890s: Automatic telephone exchange became possible with the invention of an electromechanical stepping switch (known as Strowger Exchange/Switch)
- Early 1900s: Payphones started to be deployed in US (and they were frequently abused)
- 1950s: People started to explore the vulnerabilities of telephone network – Start of 'phone phreaking'
 - Joe Engressia accidentally discovered that whistling at a tone of 2600 Hz allows controlling the phone switch to make free calls
 - Phreakers developed the 'Bluebox' and other 'boxes' that can mimic certain frequencies allocated for operators' internal use (abusing in-band signaling to control call routing)
 - Some famous phreakers: John Draper (Captain Crunch), Steve Wozniak, Steve Jobs
Telephony Networks – Quick history

- **1960s**: Businesses started to adopt internal telephone systems: *Private Branch Exchange (PBX)* to manage internal and external communications

- **1970s**:
 - **Out-of-band signaling** systems: Separate channels for call control and voice/data
 - Analog cellular networks (1G)

- **Early 1980s**:
 - Digitalization of telephone networks
 - **Integrated Services Digital Network (ISDN)**: Digital transmission of voice, video, data, fax etc. over a single line
 - **Signaling System 7 (SS7) protocol**: Out-of-band call signaling protocol
 - Premium rate services introduced
Telephony Networks – Quick history

• Early 1990s:
 – 2G cellular networks
 – The first international mobile roaming agreement
 – World Wide Web born – The first web server, browser and website

• Mid 1990s:
 – Telecommunications Act in U.S. → Deregulation and liberalization of the telecommunication industry
 – First Voice over IP system introduced
 – Pre-paid SIM cards launched
Telephony Networks – Quick history

- Late 1990s:
 - Enterprise telephony systems integrate with VOIP
 - Operators add IP capabilities to their switches
- Early 2000s: Launch of Skype and significant growth of VOIP
- Mid 2000s: 3G technology
- 2010s:
 - 4G and LTE
 - Integration of landline, cellular and VOIP networks
Telephony Ecosystem

● Three main networks that provide communication:
 – Public Switched Telephone Network (PSTN) refers to the worldwide circuit-switched telephone network (also called POTS, fixed network, landline)
 – Cellular (mobile) networks
 – IP telephony and Voice over IP (VOIP)

● Separate channels used for call signaling and voice
PSTN

- Signaling System 7 (SS7) refers to a set of protocols used to manage call establishment in PSTN
Signaling System 7 (SS7)

- In time, SS7 is enhanced to support interconnection with cellular and IP networks
Cellular networks

- Global System for Mobile Communications (GSM) refers to a set of protocols describing 2G cellular networks
 - Standardized in early 1990s
 - Still has the largest market share and most commonly used mobile protocol
- 3G and 4G technology becoming widespread too
Cellular networks – GSM

- Home Location Register (HLR) – central database that keeps details of mobile subscribers, connects to Authentication center (AuC) to authenticate the subscribers
- Mobile Switching Center (MSC) - call and SMS routing (PSTN connection), handover to other MSCs, billing records
- Visitor Location Register (VLR) – database of subscribers roaming in an area are served by an MSC
- Base Station Controller (BSC) - controls a set of base stations (BTS)
Voice Over IP (VoIP)

- VoIP usually refers to the transmission of voice over the public IP network

- Most common VoIP signaling protocols:
 - Session Initiation Protocol (SIP) - IETF standard
 - Usually uses UDP port 5060
 - SIP URI is the addressing scheme that identifies a communication point
 `sip:user:password@host:port;uri-parameters?headers`
 - H.323 – ITU standard, much more complex than SIP, but commercialized before

- Many other non-standard, proprietary protocols developed by companies (e.g., Skype)
Voice Over IP (VoIP)

- IP phone
- Soft phone
Private Branch Exchanges (PBX)

- Manages internal and external communications of enterprises
 - Enables internal routing of local calls (each phone has an 'extension' number that can be directly use within the company)
 - Provides external connectivity via a limited number of external phone lines (called 'trunks')
 - Less expensive than having an external line for every employee
 - Enables centralized support, voice mail, Interactive Voice Response (IVR) etc.

*IVR: A set of pre-recorded voice prompts that interact with caller through pressing digits. (E.g., customer support service)
Private Branch Exchanges (PBX)

- Traditional PBX
 - ISDN trunks
 - Lots of wires, expensive

- IP-PBX
 - SIP, ISDN (with additional hardware) trunks
 - Easier to manage, cheaper
Telephony Ecosystem - Summary

[Diagram showing the components of a telephony ecosystem, including mobile phones, wireless networks, IP network, PSTN, MTSO, originating and terminating operators, IP PBX, and enterprise network.]
Telephony Actors

• Operators (service providers)
 – Some of them invest in or own the network infrastructure and equipment
 – Some of them only resell the service they buy from other operators (e.g., Mobile Virtual Network Operators, MVNOs).

• End-users
 – Individuals, enterprises
Telephony Actors

- **Third Parties**
 - **Value added services** deliver content to end-users via phone calls, messaging or data network (e.g., gaming, chat lines or news) and charge the content through billing of the telecommunication service.
 - **VOIP resellers** buy communication services from carriers, and resell through VOIP gateways e.g., Cloud based communication services like Twilio provide programmable voice/SMS and originating phone numbers from many countries.
Billing systems

• Understanding the billing processes is important to understand fraud!

• Operators use Call Detail Records (CDR) for billing:
 - A CDR is created for each call routed (originated, terminated or transited) over operator's network switches
 - CDRs include details of each transaction, such as source and destination phone numbers, date, call duration, call type, completion status

• All CDRs generated at different switches are collected and processed in a central location, then sent to the billing system to be charged
Billing systems

- Two main types of billing:
 - **Retail Billing** deals with the billing of end customers for multiple services (international or domestic landline, mobile, or data services). Mobile billing can be:
 - Post-paid (requires proper customer identification)
 - Pre-paid (requires real time billing, customer identification is also important)
Billing systems

- **Wholesale billing** deals with the billing of
 - interconnect partners (for providing interconnection to make calls to another operator's customers)
 - resellers
 - roaming partners (for providing services to their customers when they roamed in another operator's coverage area)
Billing systems

• More on roaming:
 – Roaming enables to access mobile communication services even when the subscriber is outside the coverage of his 'home' network
 – To provide roaming facility, operators should have 'roaming agreements' with the 'visited' networks
 – CDRs generated by roaming subscribers are not immediately available to the home operator!
 • Near Real Time Roaming Data Exchange (NRTRDE) systems mandate maximum 4 hours to exchange CDRs
International call routing and money flow

- Collection charge, termination and transit fees
- Lack of route transparency
International call routing and money flow

- Collection charge, termination and transit fees
- Lack of route transparency
International call routing and money flow

- Collection charge, termination and transit fees
- Lack of route transparency
International call routing and money flow

- Collection charge, termination and transit fees
- Lack of route transparency
International call routing and money flow

- Least Cost Routing mechanism
Telephony Fraud
Telephony fraud: Some examples

- Small charges on your phone bill
- Stolen phone or SIM card
- Unknown international caller IDs
- Unwanted calls and voicemails

![Image of phone bill and phone screen with unknown caller ID]
Consequences of Telephony Fraud

In 2015, estimated **financial loss for operators** was $38.1 billion*

[*] CFCA Global Fraud Loss Survey, 2015

- In the US, 400K+ **spam call complaints** (monthly)
- In France, 574K complaints last year

Effects on **online security**
- Technical support scams
- Telemarketing calls recording sensitive information

[*] D. Cameron, “Major leak exposes 400K recorded telemarketing calls, thousands of credit card numbers”, 2017.
Fraud Taxonomy
Why do we need a taxonomy?

- Telephony fraud is a multi-dimensional problem (technology, environment, victim, techniques, impact...)
- Every actor has a different fraud experience
- Fraudsters have are various skills and motivations
- Current fraud terminology can be confusing and misleading
 - Different terms for the same problem,
 Same term for different problems
Defining telephony fraud

- A fraud scheme is a way to obtain an illegitimate benefit using a technique. Such techniques are possible because of weaknesses in the system, which are themselves due to root causes.
Example: Callback Scam
Example: Callback Scam

- Japanese word for “One (ring) and cut”
Example: Callback Scam

Root Causes
- Legacy/Insecure protocols,
- Variety of mediums

Weaknesses
- Lack of Caller ID authentication,
- Poor deployment practices,
- Lack of security & fraud awareness

Techniques
- Caller ID spoofing, Auto-dialers,
- PBX hacking, Premium rate service,
- Social engineering

Fraud Schemes
- Callback (Wangiri) scam

Fraud Benefits
- Get a share from billing
Fraud Taxonomy: Root causes
Root causes

• Inherent characteristics that come from the initial design and evolution of the system
 – Legacy systems that are not designed with security in mind
 • Infeasible to upgrade in a global scale
 – Large variety and number of operators & service providers
 • Hard to identify parties with malicious intentions
 – Interconnection of multiple (poorly understood) technologies, services & products
 • Broadens the attack surface
Fraud Taxonomy: Weaknesses
Weaknesses

- A vulnerability or a feature of the system that can be manipulated in a malicious way
 - Regulatory & legal weaknesses
 - Protocol weaknesses
 - Billing related weaknesses
 - Human negligence
Regulatory & Legal Weaknesses

- Telecom regulations and laws vary largely across countries
 - Gray areas about legality of some actions
 - Operators are subject to various rules
 - Obligation to route calls to all numbers
 - Cannot block any calls without user permission
 - VOIP is usually not regulated
 - Should it be regulated?
 Freedom and network neutrality discussions...
Regulatory & Legal Weaknesses

- Numbering Plans and number portability
 - Numbering plans allow to decode phone numbers to find the target operator and route the calls

Example:

<table>
<thead>
<tr>
<th>COUNTRY</th>
<th>CC</th>
<th>NDC/SN</th>
<th>DESCRIPTION</th>
<th>TYPE</th>
<th>NET NAME</th>
<th>NET TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>France</td>
<td>33</td>
<td>"493"</td>
<td>"Cote d'Azur"</td>
<td>"FIXED"</td>
<td>"Afone Mobile"</td>
<td>"VIRTUAL on SFR"</td>
</tr>
<tr>
<td>France</td>
<td>33</td>
<td>"7806"</td>
<td></td>
<td>"MOBILE"</td>
<td>"Lebara Mobile"</td>
<td>"VIRTUAL on Bouygues Telecom"</td>
</tr>
<tr>
<td>France</td>
<td>33</td>
<td>"7807"</td>
<td></td>
<td>"MOBILE"</td>
<td>"Lebara Mobile"</td>
<td>"VIRTUAL on Bouygues Telecom"</td>
</tr>
<tr>
<td>France</td>
<td>33</td>
<td>"7808"</td>
<td></td>
<td>"MOBILE"</td>
<td>"Free Mobile"</td>
<td>"3G 900/2100 HSPA+, 4G LTE 2600"</td>
</tr>
<tr>
<td>France</td>
<td>33</td>
<td>"781"</td>
<td></td>
<td>"MOBILE"</td>
<td>"Free Mobile"</td>
<td>"3G 900/2100 HSPA+, 4G LTE 2600"</td>
</tr>
<tr>
<td>France</td>
<td>33</td>
<td>"782"</td>
<td></td>
<td>"MOBILE"</td>
<td>"Free Mobile"</td>
<td>"3G 900/2100 HSPA+, 4G LTE 2600"</td>
</tr>
<tr>
<td>France</td>
<td>33</td>
<td>"783"</td>
<td></td>
<td>"MOBILE"</td>
<td>"Orange"</td>
<td>"GSM900/1800, 3G 2100 HSPA+, 4G LTE"</td>
</tr>
<tr>
<td>France</td>
<td>33</td>
<td>"7840"</td>
<td></td>
<td>"MOBILE"</td>
<td>"Orange"</td>
<td>"GSM900/1800, 3G 2100 HSPA+, 4G LTE"</td>
</tr>
<tr>
<td>France</td>
<td>33</td>
<td>"7841"</td>
<td></td>
<td>"MOBILE"</td>
<td>"La Poste Mobile"</td>
<td>"VIRTUAL on SFR"</td>
</tr>
<tr>
<td>France</td>
<td>33</td>
<td>"7846"</td>
<td></td>
<td>"MOBILE"</td>
<td>"La Poste Mobile"</td>
<td>"VIRTUAL on SFR"</td>
</tr>
<tr>
<td>France</td>
<td>33</td>
<td>"7847"</td>
<td></td>
<td>"MOBILE"</td>
<td>""</td>
<td>""</td>
</tr>
<tr>
<td>France</td>
<td>33</td>
<td>"79"</td>
<td></td>
<td>"MOBILE"</td>
<td>"Value Added Services"</td>
<td>"SUPPLEMENTARY SERVICES"</td>
</tr>
<tr>
<td>France</td>
<td>33</td>
<td>"80"</td>
<td>"Freephone Services"</td>
<td>"SUPPLEMENTARY SERVICES"</td>
<td>""</td>
<td>""</td>
</tr>
<tr>
<td>France</td>
<td>33</td>
<td>"8"</td>
<td></td>
<td>"SUPPLEMENTARY SERVICES"</td>
<td>""</td>
<td>""</td>
</tr>
<tr>
<td>France</td>
<td>33</td>
<td>"80"</td>
<td></td>
<td>"SUPPLEMENTARY SERVICES"</td>
<td>""</td>
<td>""</td>
</tr>
</tbody>
</table>
Regulatory & Legal Weaknesses

- **Numbering Plans and number portability**
 - Global phone number allocation is regulated by ITU via E.164 standardization. Each country has its own regulatory body for further allocation.
 - **Numbering plans change frequently**, commercial databases try to keep updated information
 - **Number portability** allows to change your service provider without changing your phone number
 - Easy to know if a phone number belongs to an allocated number range, but hard to know if the number is currently assigned to a user and who is the operator responsible
Regulatory & Legal Weaknesses

• Difficulty of international law enforcement
 – Even though the fraudsters are identified, law enforcement is difficult across borders

• Lack of joint industry initiative to fight fraud
 – Some operators may not have the incentive to fight fraud
 – Fighting small scale fraud can be more expensive than the fraud loss
Protocol and Network Weaknesses

Telephony network is an interconnection of PSTN, cellular and IP networks, all of which have different weaknesses:

• Lack of encryption and authentication mechanisms in SS7
 - Access to SS7 network is no longer limited to small number of trusted operators (Operators providing commercial access to 3rd parties, femtocell hacking, etc.)
 - Anyone with access to signaling links can tamper with SS7 messages
 - SIGTRAN (SS7 over IP) protocol suite introduces encryption (TLS or IPSec), but only at transport layer.

• Lack of transparency on the call route
 - Signaling protocols does not provide a mechanism to trace the route of a call
 - Operators can only know the previous and the next hop of a call
 - IP gateways make call tracing even more difficult
Protocol and Network Weaknesses

• Lack of Caller ID Authentication
 - Caller ID (identification) information is transmitted between operators through the underlying signaling protocol
 - SS7 and most IP based signaling protocols do not authenticate the caller ID
• Lack of proper encryption and authentication in cellular and VOIP network protocols, vulnerabilities in software stacks
 - e.g., GSM (2G) networks only authenticates user, but not the network
 Various attacks against A5/1 and A5/2 stream ciphers used in GSM
 Vulnerabilities in 3G. 4G/LTE implementations (although they provide mutual authentication between network and mobile equipment)
 - Legacy technologies lead to downgrade attacks
Weaknesses in Billing Systems

- Billing systems are complex and mistakes in billing process or tariff plans can be manipulated.
- Operators cannot immediately detect fraudulent usage (High usage reports) for roaming CDRs.
- Value Added Services (VAS) further complicates billing (complex networks of 3rd party service providers and number resellers, hard to identify malicious parties).
 - Operators have Revenue Assurance departments, usually working together with the Fraud Management department.
Human Negligence

- People interacting with telecom networks may not be aware of its vulnerabilities and possible fraud & abuse

- Some weakness on the enterprise level:
 - lack of internal control systems (such as access control)
 - poor deployment practices (weak passwords, ignoring updates)
 - lack of vulnerability management in software and hardware systems
Fraud Taxonomy: Techniques
Techniques

• Any attack vector that manipulates a weakness and enables a fraud
 – Operator level
 – Protocol related attacks
 – Abuse of Premium Rate Services
 – Techniques to increase profit
 – Other techniques
Operator Level Techniques

- Manipulation of call routing
 - Operators can manipulate the routing of calls that transit through their networks. E.g.,
 - by diverting the call to a fraudulent route
 - by terminating the call on an IVR, instead of sending it to legitimate destination (short-stopping)
 - Due to 'lack of route transparency', originating operator will not be aware of this
Operator Level Techniques

• Manipulation of call signaling
 – Operators can manipulate call signaling messages in order to:
 • fake the originating phone number (which will affect billing)
 • delay the call disconnect message or provide an early answer (which will increase call duration)
Operator Level Techniques

• Number Range Hijacking
 – Abuse of Least Cost Routing (LCR) policies
 • Operator advertises very cheap rates for a destination number range and attracts a lot of traffic from other operators, as they will choose the cheapest route
 – Calls to hijacked numbers may never reach the real destination, if a fraudulent transit operator hijacks and 'short-stops' the calls
Protocol Related Attacks

• Caller ID Spoofing
 - Caller ID is supplied by the sender (originating party) and not authenticated. Most SIP providers allow spoofing (Demo)
 - More difficult to spoof caller ID in mobile networks, due to authentication of subscriber
 - IP-to-GSM & IP-to-PSTN GWs makes spoofing easier

[*]Song et. al., “iVisher: Real-Time Detection of Caller ID Spoofing”, ETRI, 2014
Protocol Related Attacks

• SS7 Tampering
 – An attacker with access to SS7 network can use vulnerable SS7 messages to query a subscriber's status or change certain configurations
 – SS7 tampering allows
 • Call and SMS interception
 • Location Tracking
 • Call forwarding (e.g., to a premium rate number)
 • Denial of service
Protocol Related Attacks

- SS7 Tampering
 - Some vulnerable SS7 messages:

<table>
<thead>
<tr>
<th>Message</th>
<th>Attack</th>
</tr>
</thead>
<tbody>
<tr>
<td>sendAuthenticationInfo</td>
<td>Interception</td>
</tr>
<tr>
<td>registerSS, eraseSS</td>
<td>Interception (Incoming), Fraud</td>
</tr>
<tr>
<td>updateLocation</td>
<td>Interception(SMS), DoS</td>
</tr>
<tr>
<td>deleteSubscriberData, cancelLocation</td>
<td>DoS</td>
</tr>
<tr>
<td>provideSubscriberLocation</td>
<td>Tracking</td>
</tr>
</tbody>
</table>

Protocol Related Attacks

• IMSI catchers
 – Fake GSM base stations that are used to identify and locate phones in proximity (catch their IMSI), and (further) intercept calls and communications
 – IMSI catchers manipulate the lack of network authentication in GSM protocol
 – 3G/4G networks are also vulnerable due to downgrade attacks, implementation problems and leaked authentication keys
Demo

SS7 attacks + radio capture (3G network)
for SMS interception
More techniques...

• SIM Boxes
 - devices that can act as a gateway between the mobile network (e.g., GSM) and the IP network or PSTN
 - can contain up to 64 SIM cards
 - both legitimate and fraudulent uses
More techniques...

- **Autodialers**
 - Systems (hardware or software) that can automatically initiate calls to a given list of telephone numbers
 - Once a call is answered, autodialer can either play a recorded message or connect the call to a live person
 - Allows attackers to generate large number of calls in a short time
Fraud Taxonomy: Fraud Schemes
Fraud schemes

- Actual methodology employed by the fraudster to commit fraud
 - Toll evasion
 - Retail billing related
 - Wholesale billing related
 - Revenue share fraud
 - Voice spam and scam
 - Targeted fraud
Toll Evasion Fraud

- Aims to make calls without the obligation of paying the call charges
 - Example: **Subscription Fraud**
 - Fraudster uses stolen or fake identity credentials to subscribe for a post-paid SIM card
 - All calls will be charged to the stolen/fake account
Retail Billing Related Fraud

- Fraud schemes related to the billing of retail customers
 - **Over-billing**: Operators may place unauthorized charges on client’s bill (e.g., when a customer unknowingly registers to a service)
 - **Tariff plan abuse**: Customers can abuse unlimited or flat rate tariff plans
Wholesale Billing Related Fraud

• Fraud schemes related to inter-carrier billing process

• Ex.1 False Answer Supervision: A transit operator fraudulently increase call duration or put extra charges on a call, by providing
 – False answer (call is charged while being short-stopped and diverted to a recorded message)
 – Early answer (call is charged while the callee's phone is still ringing)
 – Late disconnect (call is charged even after the disconnect message)
Wholesale Billing Related Fraud

- **Ex2. Interconnect Bypass Fraud**: use of illegitimate gateway exchanges to avoid the legitimate gateways and international termination fees
 - Example: SIM Boxes and VOIP gateways are frequently used to bypass international calls and terminate them as domestic calls

Revenue Share Fraud

- Complex fraud scheme that targets value added services or high cost destinations
- Fraudster aims to earn a share of the call revenue
- Example: Callback scam
 International Revenue Share Fraud
International Revenue Share Fraud

- Background: Least Cost Routing mechanism
International Revenue Share Fraud

Op-A
- keeps 30c (instead of 20c)
- pays 1$ (PBX hacking, Stolen SIM cards, Mobile malware...)

Op-B
- keeps 40c

T1
- keeps 20c

T2
- keeps 30c

T3
- keeps 20c
- 0.6$

T4
- keeps 20c
- 0.4$

Premium Rate Service Provider
- keeps 10c
- 0.7$

Fraudster generating calls
- keeps 10c
- 0.1$

Unreachable customer
International Revenue Share Fraud: Summary

- The fraudulent transit operator
 - Hijacks and short-stops the calls
 - Keeps the termination fee
 - Re-routes calls to 3rd party service provider
- 3rd party service provider
 - Resells the high cost numbers as “Premium Rate Numbers”
- The fraudster
 - Gets a set of numbers from 3rd party service provider
 - Generates high volume of calls to these numbers (e.g., using a compromised PBX or stolen SIM cards...)
Voice Spam and Scams

- Voice spam includes all types of unsolicited and illegitimate calls
- Fraudsters obtain phone number lists from leaked databases, form submissions, etc.
- They can use auto-dialers are used to generate large number of calls
- Pre-recorded messages (robocalling) or call center agents interact with victims
 - to reveal sensitive information (e.g., credit card number) or
 - to convince victims to do certain actions (e.g., wire transfer to a bank account)
- Caller ID spoofing and social engineering techniques are frequently used
- Examples: Tech support scam, Free cruise scam
Fraud Taxonomy:
Fraud Benefits
Fraud Benefits

- Fraud benefit: The ultimate aim of the fraudster to commit fraud
 - can be financial:
 - Avoiding payment (totally or partially)
 - Reselling minutes or service
 - Increasing company revenue
 - or other benefits:
 - Anonymity for criminal activities
 - Disrupting service
 - Reconnaissance
 - Privacy invasion
Conclusions

Telephony fraud is likely to remain as a significant problem

- Several weaknesses (in protocols, regulations…) that are difficult to fix
- New technologies will bring new vulnerabilities
- Fraudsters are smart and have strong incentives
- Fighting fraud is costly (fraud loss > cost of detection/prevention)