
Modern Fuzzing
Research & Engineering

Andrea Fioraldi

@andreafioraldi

https://twitter.com/andreafioraldi

What is Fuzz Testing?
Fuzz Testing, or Fuzzing, is a family of “Software” Testing techniques

that involves providing machine-generated inputs to the System Under

Test (SUT) in order to satisfy some objectives.

What is Fuzz Testing?
Fuzz Testing, or Fuzzing, is a family of “Software” Testing techniques

that involves providing machine-generated inputs to the System Under

Test (SUT) in order to satisfy some objectives.

What is Fuzz Testing?
Machine-generated inputs can be of any kind, beyond the classic

definition of “unexpected” (by the way, what does it means?) inputs.

What is Fuzz Testing?
Machine-generated inputs can be of any kind, beyond the classic

definition of “unexpected” (by the way, what does it means?) inputs.

Fuzzing is often considered related to Random Testing, a technique

that provides inputs sampled uniform independently from the input

space (using a specification maybe, so they are not random bytes in

general).

What is Fuzz Testing?
Machine-generated inputs can be of any kind, beyond the classic

definition of “unexpected” (by the way, what does it means?) inputs.

Fuzzing is often considered related to Random Testing, a technique

that provides inputs sampled uniform independently from the input

space (using a specification maybe, so they are not random bytes in

general).

But Fuzzing can generate inputs deterministically, or can generate

inputs mutating previously generated inputs that makes the sampling

from the input space not independent.

Widely discussed SOTA Fuzzing in 2022
● Feedback-driven, mainly Coverage-guided

Corpus Input
Mutation

Program
Under Test

Crashes

Coverage

Widely discussed SOTA Fuzzing in 2022
● Feedback-driven, mainly Coverage-guided

● Can bypass coverage roadblocks (concolic-aided, taint-assisted,

RedQueen, …)

if (input == 0xabadcafe) {
 interesting_code();
}

Widely discussed SOTA Fuzzing in 2022
● Feedback-driven, mainly Coverage-guided

● Can bypass coverage roadblocks (concolic-aided, taint-assisted,

RedQueen, …)

● Input models help to fuzz deeper

<start> ::= <expr>
<expr> ::= <term> + <expr> | <term> - <expr> | <term>
<term> ::= <term> * <factor> | <term> / <factor> | <factor>
<factor> ::= +<factor> | -<factor> | (<expr>) | <integer> |
<integer>.<integer>
<integer> ::= <digit><integer> | <digit>
<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Widely discussed SOTA Fuzzing in 2022
● Feedback-driven, mainly Coverage-guided

● Can bypass coverage roadblocks (concolic-aided, taint-assisted,

RedQueen, …)

● Input models help to fuzz deeper

● Can test network interactions

Widely discussed SOTA Fuzzing in 2022
● Feedback-driven, mainly Coverage-guided

● Can bypass coverage roadblocks (concolic-aided, taint-assisted,

RedQueen, …)

● Input models help to fuzz deeper

● Can test network interactions

● Can fuzz userspace programs, kernel, hypervisors, …

Widely used tools in 2022

LLVM’s Libfuzzer

We still
miss bugs

Yes, even in heavily-fuzzed

projects in OSS-Fuzz

Still finding these bugs by hand…

Still finding these bugs by hand…

Why?
● Fuzzers often tests only the default configuration

● Fuzzers have input length limits

● Code coverage as feedback is not enough

Why?
● Fuzzers often tests only the default configuration

● Fuzzers have input length limits

● Code coverage as feedback is not enough (beware of path explosion!)

○ Fioraldi, D’Elia, Balzarotti. “The Use of Likely Invariants as Feedback for

Fuzzers”

○ Mantovani, Fioraldi, Balzarotti. “Fuzzing with Data Dependency Information”

○ Herrera, Payer, Hosking. “DATAFLOW - Towards a Data-Flow-Guided Fuzzer”

An Example
int wavlike_msadpcm_init (SF_PRIVATE *psf, int blockalign, int samplesperblock)
{
 MSADPCM_PRIVATE *pms ;
 unsigned int pmssize ;
 ...
 pmssize = sizeof (MSADPCM_PRIVATE) + blockalign + 3 * psf->sf.channels * samplesperblock
;
 ...
 pms->samples = pms->dummydata ; // array in pms
 pms->block = (unsigned char*) (pms->dummydata + psf->sf.channels * samplesperblock) ;
 pms->channels = psf->sf.channels ;
 pms->blocksize = blockalign ;
 ...
}

An Example
int wavlike_msadpcm_init (SF_PRIVATE *psf, int blockalign, int samplesperblock)
{
 MSADPCM_PRIVATE *pms ;
 unsigned int pmssize ;
 ...
 pmssize = sizeof (MSADPCM_PRIVATE) + blockalign + 3 * psf->sf.channels * samplesperblock
;
 ...
 pms->samples = pms->dummydata ; // array in pms
 pms->block = (unsigned char*) (pms->dummydata + psf->sf.channels * samplesperblock) ;
 pms->channels = psf->sf.channels ;
 pms->blocksize = blockalign ;
 ...
}

An Example
static int msadpcm_decode_block (SF_PRIVATE *psf, MSADPCM_PRIVATE *pms)
{
 ...
 sampleindx = 2 * pms->channels ;

 while (blockindx < pms->blocksize)
 {
 bytecode = pms->block [blockindx++] ;
 pms->samples [sampleindx++] = (bytecode >> 4) & 0x0F ; // heap overflow bug
 pms->samples [sampleindx++] = bytecode & 0x0F ;
 }
 ...
}

An Example
static int msadpcm_decode_block (SF_PRIVATE *psf, MSADPCM_PRIVATE *pms)
{
 ...
 sampleindx = 2 * pms->channels ;

 while (blockindx < pms->blocksize)
 {
 bytecode = pms->block [blockindx++] ;
 pms->samples [sampleindx++] = (bytecode >> 4) & 0x0F ; // heap overflow bug
 pms->samples [sampleindx++] = bytecode & 0x0F ;
 }
 ...
}

This only happens when the program is in a specific state, characterized by a
small allocation size for the pms buffer and a pms->blocksize value sufficiently
high to force the loop to write out of the bounds of the array.

However, none of these requirements can be extracted from code coverage, as there
are no branches in the program that involve these thresholds

An Example
pmssize = sizeof (MSADPCM_PRIVATE) + blockalign + 3 * psf->sf.channels * samplesperblock

Why?
● Fuzzers often tests only the default configuration

● Fuzzers have input length limits

● Code coverage as feedback is not enough

● Harnessing to cover all the code is hard (especially for devs)

Why?
● Harnessing to cover all the code is hard (especially for devs)

○ We can generate them automatically

■ Ispoglou, Austin, Mohan, Payer. “FuzzGen: Automatic Fuzzer Generation”

■ Babić, Bucur, Chen, Ivančić, King, Lemieux, Szekeres, Wang. “FUDGE: Fuzz

Driver Generation at Scale”

Why?
● Harnessing to cover all the code is hard (especially for devs)

○ We can generate them automatically

○ We need introspection of what the fuzzer can cover

■ Fuzz Introspector (https://github.com/ossf/fuzz-introspector)

https://github.com/ossf/fuzz-introspector

Why?
● Harnessing to cover all the code is hard (especially for devs)

○ We can generate them automatically

○ We need introspection of what the fuzzer can cover

■ Fuzz Introspector (https://github.com/ossf/fuzz-introspector)

https://github.com/ossf/fuzz-introspector

Beyond
memory

corruption
bugs

A SQL injection is not causing

a segfault in your application

Several paths are SOTA
● Differential fuzzing

○ Cryptofuzz (https://github.com/guidovranken/cryptofuzz)

○ Maier, Fäßler, Seifert. “Uncovering Smart Contract VM Bugs Via Differential

Fuzzing”

https://github.com/guidovranken/cryptofuzz

Several paths are SOTA
● Differential fuzzing

○ Cryptofuzz (https://github.com/guidovranken/cryptofuzz)

○ Maier, Fäßler, Seifert. “Uncovering Smart Contract VM Bugs Via Differential

Fuzzing”

● Custom bug detectors

○ Handwritten bug detectors, useful for memory safe languages (e.g. Java

https://www.code-intelligence.com/blog/log4j-bug-detectors)

○ Custom sanitizers (e.g.

https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=49053)

○ Mining invariants and automatic insertion of assertions

■ Daikon, Purify, …

https://github.com/guidovranken/cryptofuzz
https://www.code-intelligence.com/blog/log4j-bug-detectors
https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=49053

Several paths are SOTA
● Differential fuzzing

○ Cryptofuzz (https://github.com/guidovranken/cryptofuzz)

○ Maier, Fäßler, Seifert. “Uncovering Smart Contract VM Bugs Via Differential

Fuzzing”

● Custom bug detectors

○ Handwritten bug detectors, useful for memory safe languages (e.g. Java

https://www.code-intelligence.com/blog/log4j-bug-detectors)

○ Custom sanitizers (e.g.

https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=49053)

○ Mining invariants and automatic insertion of assertions

■ Daikon, Purify, …

https://github.com/guidovranken/cryptofuzz
https://www.code-intelligence.com/blog/log4j-bug-detectors
https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=49053

Can we do better?
● Improve invariants mining, the coverage problem causes too many

false positive and locally valid constraints unsuitable for

fuzzing

Can we do better?
● Improve invariants mining, the coverage problem causes too many

false positive and locally valid constraints unsuitable for

fuzzing

● Build large databases of bug patters (?)

Can we do better?
● Improve invariants mining, the coverage problem causes too many

false positive and locally valid constraints unsuitable for

fuzzing

● Build large databases of bug patters (?)

● Maybe it’s time to start approaching program analysis problems

with ML without the “wanna find something to apply this model”

bias

Wanna build
a fuzzer and
compare with
the others?

Good luck.

Problem: Fuzzers Fragmentation

From https://fuzzing-survey.org/

https://fuzzing-survey.org/

Cause: Monolithic Codebases
Fuzzers are

⇒ Designed to be tools

⇒ Not designed with code reuse in mind

⇒ Hard to extend

Many fuzzers are incompatible forks of others (usually AFL)

This makes them incompatible with orthogonal techniques

How to Create a Fuzzer Then?

● Fork an existing fuzzer (the n-th AFL-something)

● Create a custom fuzzer from scratch

Custom Fuzzer Engineering Issues
● Lack of code reuse, you will have to spend a lot of time in

adapting different techniques from different fuzzers

Custom Fuzzer Engineering Issues
● Lack of code reuse, you will have to spend a lot of time in

adapting different techniques from different fuzzers

● Reinventing the wheel, you will code the same code to do that same

thing that all others do again and again

Custom Fuzzer Engineering Issues
● Lack of code reuse, you will have to spend a lot of time in

adapting different techniques from different fuzzers

● Reinventing the wheel, you will code the same code to do that same

thing that all others do again and again

● Naive design, typically just a mutator

Custom Fuzzer Engineering Issues
● Lack of code reuse, you will have to spend a lot of time in

adapting different techniques from different fuzzers

● Reinventing the wheel, you will code the same code to do that same

thing that all others do again and again

● Naive design, typically just a mutator

● Scaling, you cannot adapt it easily to multi-core or -machine

LibAFL

What?
LibAFL is a library for fuzzers that are

- Fast (low IPC, runtime overhead)

- Scalable (almost linearly to 200+ cores)

- Portable (Android, Windows, MacOS, Linux, Kernels, …)

- State-of-the-Art (Hybrid-, Grammar-, Token-, Feedback-Fuzzing)

- Multi-instrumentation (binary-only Frida & Qemu, Clang, Python,…)

And, most importantly, very extendable with your own components.

Is fuzzer X
better than

Y?

We don’t know. Really, we can

only speculate about this.

Current benchmarking metrics
● Code coverage over time

● Bugs over time

● Speed

● CVEs found (lol)

● Reached coverage for each fuzz case (not so used, IMO useful to

benchmark structured mutators)

Standard benchmarks ATM

Standard benchmarks ATM

Can we improve?
● More representative bugs

● “Automated Magma”

● Changing often the targets (maybe from OSSFuzz) to avoid

overfitting

● Decent synthetic bugs?

Can we improve?
● More representative bugs

● “Automated Magma”

● Changing often the targets (maybe from OSSFuzz) to avoid

overfitting

● Decent synthetic bugs?

Can we improve?

Hard
engineering
problems

There’s a paper about it,

problem solved.

Re-implementing things is hard
● Development cost and maintenance

Re-implementing things is hard
● Development cost and maintenance

● Re-evaluate techniques to decide if the improvement worths the

effort

Re-implementing things is hard
● Development cost and maintenance

● Re-evaluate techniques to decide if the improvement worths the

effort

● Can we do better simply buying more core?

Re-implementing things is hard
● Development cost and maintenance

● Re-evaluate techniques to decide if the improvement worths the

effort

● Can we do better simply buying more core?

Re-implementing things is hard
● Development cost and maintenance

● Re-evaluate techniques to decide if the improvement worths the

effort

● Can we do better simply buying more core?

● Lack of production-ready engines for tracing/instrumentation of

exotic targets

Hard targets

Hard targets

Hard targets

Hard targets
● Usability gap

● Emulation-based fuzzing tools are out-of-date

● We need something like “Step till the break point, put the input

in $rdi, snapshot fuzz from here”

Ask more about fuzzing at
 https://discord.gg/gCraWct

https://discord.gg/gCraWct

Thanks y’all

