
Android, Notify Me When It Is Time To Go Phishing

Antonio Ruggia
University of Genoa

Genoa, Italy
antonio.ruggia@dibris.unige.it

Andrea Possemato
EURECOM

Sophia Antipolis, France
andrea.possemato@eurecom.fr

Alessio Merlo
Centre for Higher Defence Studies (CASD)

Rome, Italy
alessio.merlo@casd.difesa.it

Dario Nisi
EURECOM

Sophia Antipolis, France
dario.nisi@eurecom.fr

Simone Aonzo
EURECOM

Sophia Antipolis, France
simone.aonzo@eurecom.fr

Abstract—A mobile banking app just started up, and the
notification “App updated, click here to restart” appears.
The graphic theme is the same as the bank. Can we trust it?
What if we cannot even trust that tapping an app actually
loads the original one? More generally, what if Android
notifies an attacker when her victim has just launched the
target app of her phishing campaign so that she could cast
the hook at the perfect moment?

In this paper, we abuse inotify APIs, a mechanism for
monitoring file system events, to mount a state inference-
based phishing attack from a malicious app installed on the
victim’s smartphone. We also verified the novelty of our work
analyzing 10,000 recent Android malware, and although we
found some cases where malware uses inotify for their petty
purposes, our attack seems to be publicly unknown.

However, since Android constantly evolves year after
year, we studied its feasibility over different Android versions
and attacker’s capabilities. By analyzing 4, 863 of the most
popular apps, the most disconcerting finding is that if the
attacker knows the installation path of the target app, all
Android apps are vulnerable, regardless of the system version.
Getting the installation path of an app is a capability that is
only protected by a normal permission, and to make matters
worse, there are workarounds to get it even without such
permission.

Even if this capability is denied, we propose different
attack models under which this attack is still possible;
however, at the end of our work, we provide the remediation
to eradicate once and for all these attacks. Through this
work, we reported three vulnerabilities to Google. Two were
acknowledged as bugs of moderate severity, while the last
one was already known but not public.

1. Introduction

File system event monitoring is essential for many
programs, from file managers to security tools. Starting
from version 2.6.13, the Linux kernel includes inotify [31]—
a component that allows a userspace program to monitor
and react to file system events, such as file accesses,
deletions, and modifications. The inotify [31] APIs allow
targeting either singular files or entire directories and
filtering only specific events. When one of such events

occurs on the monitored files, the system notifies the app,
which, in turn, can execute code in response to the event.

Android has fully supported inotify since its early
versions (API Level 1 [27]). Apps can watch file system
events – employing the inotify terminology – from native
code (C/C++) through the standard inotify APIs, and
Java/Kotlin, using the FileObserver class.

While providing powerful primitives to implement new
features, the inotify infrastructure has also played a role
in Man-in-the-Disk (MitD) attacks [32]. These attacks
are possible when the program’s logic depends on the
content of a file that an attacker can access and modify.
Inotify proved perfect for this task. By watching for a
specific event on the target file, the attacker can timely
and opportunistically replace its legitimate content with
malicious data. The consequences may be more or less
severe depending on the tampered data.

In 2016, Ahn et al. [3] showed that particular file
system events’ occurrences allow detecting a specific UI
screen transition. Once again, inotify made it possible
to monitor specific file system patterns, this time for
perfectly timing a phishing attack by starting an activity
that resembles the original one. While inspiring, this work
relies on capabilities that attackers can no longer obtain
under reasonable threat models (e.g., Android does not
allow third-party apps to list running apps and their PIDs).

Given its history of misuse for malicious purposes, this
work assesses whether the inotify subsystem can still play
a role in state inference attacks, despite the tight security
models the Android developers put in place. This attack
class aims to determine the state of another app and pave
the way to a large class of attacks, including phishing. In
particular, this work focuses on determining when an app
starts. At the same time, it is the most valuable for an
attacker and the most practical to analyze automatically.
From an attacker’s perspective, determining when the user
willingly launches an app maximizes the chances to lure it
into providing accounts credential to a phony UI interface.
It is not by chance that banking malware often monitors
apps’ startup for phishing purposes [30], [54]. By choosing
to study the app’s startup and not any generic UI transitions,
we do not need heavy human intervention to select and
trigger valuable ones (e.g., login screens). The concept
behind our approach is straightforward: If an app always

generates a unique file system event at startup (among
other apps installed on the device) and an attacker can
monitor such an event with inotify, she can easily infer
when the user has just opened the app.

We manually tested the feasibility of such an attack
by creating a vulnerable target app that reads a world-
readable text file when its main activity starts and a
malicious app that monitors these events with inotify. When
the vulnerable app was executed, the malicious app was
“notified” and could push a new phishing activity. Picture
the scene: the user taps on the target app icon, and the
new fake spoofed activity that looks like the original one
is displayed on the screen; this leaves no trace to the
victim, who has no way of noticing the deception and
distinguishing between the original and the malicious.

However, this precise attack is limited by a privileged
Android permission (SYSTEM_ALERT_WINDOW) that re-
quires a slightly more complicated procedure to get it from
the victim. Although this does not stop modern malware
authors from using it (according to our measurements, 57%
of malware requires it, while this percentage plummets to
9% for benign apps), the attack can still be performed by
popping up a fake notification that seems to come from
the target app.

For this reason, in this paper, we investigate the
conditions surrounding the feasibility of this attack, trying
to answer the following research questions:
• RQ1 Are malware authors already exploiting inotify?
• RQ2 What capabilities (e.g., permissions or information)

must an attacker have to carry out this attack?
• RQ3 To what extent does the Android version affect

this attack and the attacker’s capabilities?
• RQ4 Are the attacker’s capabilities realistic to carry out

this state inference attack and mount a phishing attack?
• RQ5 How is the security posture of other vendors

concerning this attack?
• RQ6 Which mitigations can stop this attack for good?

First, we investigated the usage of inotify among recent
Android malware to assess the novelty of our attack. Our
results on a set of over 10, 000 malware in 2021 show that
they abuse inotify only for implementing anti-debugging
tricks or executing code when they are uninstalled. In
the other cases, we detected the use of inotify just from
analytics libraries. Therefore, to the best of our knowledge,
no existing Android malware implements the attack pattern
we discuss in this paper.

Then, we investigated the conditions for carrying out
this attack. Given that the attacker’s capabilities depend
on which files the apps use when started and if she has
the permission to add an inotify watch on such files, we
developed inoTool, a tool to dynamically analyze Android
apps and monitor their interactions with the file system.

With inoTool, we analyzed a heterogeneous dataset
of 4, 863 benign Android app, created by collecting the
most downloaded free apps over the 50 categories in the
Google Play Store. We found that an attacker can generate
a kind of “signature” that uniquely identifies which files
her target app opens at startup, enabling her to launch a
phishing attack by monitoring one of such files. This attack
is feasible on a large scale, and during our investigation, we
uncovered some design issues that improve the likelihood
of success. For example, we discovered an information
disclosure vulnerability through which one can get a partial

list of the apps installed on a device, despite the recent
changes in Android strongly restricting package visibility,
namely, querying for information about the other apps.

We identified three attack models from the analysis
of the results and the various mechanisms involved. As
the main finding of our work, the most potent model (in
which an attacker is assumed to know the installation
path of its target app), all Android apps are vulnerable,
regardless of the Android version. Moreover, the only
capability needed to implement this attack is protected by
a single permission automatically granted at installation
time. Although Google is aware of the risks deriving from
this permission and performs capillary checks on its Play
Store, we will also show that the current security model
of Android presents several loopholes that make obtaining
this permission unnecessary.

The second attack model assumes that an attacker can
no longer obtain the installation paths of the apps installed
on the device. Under these circumstances, we show that
an attacker still manages to implement the attack on a
limited number of apps. The third and last model refines
the strategy further and manages, on average, to target half
of the apps installed on a typical device.

Finally, we show how different remedies defeat these
different types of attackers. However, in some cases, the
specific behavior of the target app, in combination with the
apps installed on the device, still leaves a small window
for successfully carrying out the attack.

In the spirit of open science, we release all the source
code we developed during our study [42]. On the other
hand, we cannot share benign apps or malware due to
legal restrictions, but we share their hashes.

2. Background

This section provides the necessary technical back-
ground for the rest of the paper. We start by presenting
the relevant details of the Android operating system, and
then we continue by introducing the inotify subsystem of
the Linux kernel.

2.1. Android Internals

Android Apps’ Anatomy and Installation. Apps are the
cornerstone of the Android ecosystem and represent the
primary vehicle for developers to provide new features
to users. Java and Kotlin are the reference languages for
app development; then, they are semi-compiled in Dalvik
bytecode (DEX) files. While very versatile, these languages
and the Dalvik technology are generally not optimal for
performance-critical tasks or low-level interactions with
the device hardware. To deal with this shortcoming, the
Android Software Development Kit (SDK) also allows
writing portions of an app in C/C++, which are compiled
into native libraries. During the app-building process, the
SDK packs the Dalvik bytecode and the native code into
an Android Package (APK) file that the developer can
then distribute, e.g., through app marketplaces. Beyond the
code, an APK file contains resources required for the app
execution (e.g., images to render the user interface) and a
Manifest file. The Manifest provides valuable information

about the app, such as its unique package name and
required permissions.

Permissions allows Android to protect sensitive data
(e.g., system state and a user’s contact information) and
prevents potentially dangerous actions (e.g., connecting to a
Bluetooth device or recording audio). Android permissions
are ranked into different protection levels [22] according
to the sensitivity of the resource they protect. These levels
effectively implement a layered clearance mechanism.
While the system automatically grants normal permissions
(i.e., those that present minimal risk to the user’s privacy)
at installation time, dangerous (or runtime) permissions
need explicit runtime authorization by the user. Each time
an app tries to access a resource or perform an action
protected by dangerous permissions, the user is prompted
with a UI message detailing the type of resource/action
the app attempted to access and asking whether to grant or
deny it. The highest protection level is the privileged one.
Permissions with this level have an impact on the overall
security posture of the device. The user has to manually
grant them through a multistep procedure in the System
Settings app, during which the system warns her about the
risks of this permission.

At installation time, Android creates a dedicated di-
rectory for the app in /data/app/ in which the system
copies the original APK, renaming it as “base.apk.”
The name of this directory – from now on installation
path – consists of the app package name and, since
Android 8.0 [18], a random string. The random com-
ponent in the directory name prevents a malicious app
from trivially determining another app installation path
and accessing its private files. According to the An-
droid documentation, the only supported way to obtain
a third-party app installation path is through the get-
PackageInfo API of the Package Manager, which
is subject to the permission mechanism. For exam-
ple, suppose to install an app whose package name is
com.example on a device with an x86 CPU. A legit
installation path could be /data/app/com.example-
Bd6GIb47XTzpL16==/. In this location, the system
copies the app’s APK, renaming it base.apk file, and
creates a subdirectory named lib/x86/ that contains all
the x86 libraries (.so).

Mandatory Access Control & SELinux. Security En-
hanced Linux (SELinux) is a mandatory access control
(MAC) system for the Linux operating system, and it was
introduced in Android 4.3. A MAC system differs from
Linux’s discretionary access control (DAC) system. Indeed,
with a DAC system, an owner of a particular resource
controls access permissions associated with it, while on
a MAC there is a central authority for a decision on all
access attempts. In Android, DAC and MAC coexist: a user
can interact with a resource if she has enough permissions
(DAC) and the security policy allows it (MAC).

In detail, SELinux adds opaque pointers to potentially
sensitive kernel objects (e.g., files, network interfaces) and
mediates access to such objects by placing hooks functions
to determine if an action (known as permission, such as
read or write) should be allowed. The decision is made
according to the policies, which are a set of rules that guide
SELinux in the choice based on the labels of the resources.
In fact, every object (e.g., files, directories, processes, etc.)

has associated a security context (or label) that specify its
security-related information, i.e., SELinux user, role, type,
and sensitivity. In particular, Android relies on the Type
Enforcement (TE) component of SELinux, in which the
policies are enforced based on the type of subjects and
objects. By default, SELinux denies all requests except
the ones that respect the current policy. In addition, on
Android, a third-party app is assigned to the context with
the type untrusted_app.

A SELinux policy rule comes in the form allow
source target:class permissions. This rule
allows a subject (of type source) to access the object
(of type target). The class field specifies the kind of
the object (e.g., file, socket, etc.), while the set of in-
volved operations is specified by the permissions field. For
instance, the allow untrusted_app app_data_-
file:file {read write} policy specifies that un-
trusted apps are allowed to read and write files labeled
“app data file”. Finally, Android provides a set of macros
to handle the most common cases to simplify the rule defi-
nition. For instance, it defines the permission rw_file_-
perms, which automatically includes all the operations
needed to read and write a file.

2.2. Inotify in Linux and Android

Many user apps in modern computer systems need
access to the file system beyond simply reading/writing
files. Take a remote directory synchronization utility as an
example. This utility needs to monitor the target directory
to detect file creations, deletions, and modifications to
operate automatically. While possible, implementing this
type of monitoring by employing traditional file system
operations (e.g., listing the directory every second by
relying on a busy-waiting model) is not efficient. For this
reason, modern operating systems provide dedicated APIs
for implementing low-overhead file system monitoring.

One such API is the inotify subsystem of the Linux
kernel, which provides an event-driven interface to intercept
file system events. The canonical inotify workflow starts
with a program creating an inotify instance through the
inotify_init syscall and specifying what type of
events to monitor through the inotify_add_watch
syscall. The inotify instance can then be queried with the
read syscall that blocks the program execution until one
of the monitored events occurs.

The Android operating system wraps this workflow in
the FileObserver abstract class, which programmers
can use as a base class to implement file system monitoring.
This class constructor takes the file paths to monitor as
input, while two more methods start and stop the file
system monitoring. Finally, the app can specify the event
handling logic by implementing the onEvent abstract
method that the framework invokes each time an event
involving the monitored paths occurs.

3. Related Work

In 2011, Felt et al. [13] first discussed the risk of
phishing attacks on mobile platforms and provided a set
of techniques to carry out such attacks. As the authors
pointed out, an essential ingredient of a successful phishing
attack is to intercept the execution of a legitimate app

promptly and to overtake the UI to present the user with
a faithful copy of the interface of the intended app. When
facing a seemingly familiar interface, the user is lured
into providing sensitive information, such as credentials.
While back in 2011, it was relatively easy to determine
when an app started (any app could list all the processes
running on the system and implement a poll-like wait
behavior), things became much harder once phishing
attacks became prevalent. As a result, process listing was
soon forbidden, forcing attackers to find new ways to detect
when the user launched an app. These new techniques
are commonly known in the literature as State Inference
Attacks. Researchers showed that real-world malware [30],
[35], [54] employ state inference as the first stage in their
attacks, either for phishing or to monitor and profile the
user. Several research works have studied and documented
techniques to reliably determine when an Android app is
being executed [6], [11], [14], [16], [38], [40], [46], [47].
Possemato et al. [38] grouped all existing vulnerabilities
into two macro-categories:

I) File system layer. The proc file system (i.e., procfs)
is a pseudo-file system that provides an interface to kernel
data structures. The files in the procfs contain sensitive
information, such as the program’s name currently executed.
Several works [9], [11], [46] discussed different techniques
that allow a malicious user to build state inference attacks
leveraging the procfs information. In addition, Spreitzer
et al. [46] proposed a fully automated technique to assess
the procfs information leaks.

II) Android System Services layer. Android apps use
the APIs the System Services of the Android framework
exposes to access Android-specific features or interact
with hardware components. To interact with privileged
components, Services interact with the system_server,
which runs as the privileged system user. A vulnerability in
some Service APIs can lead to the disclosure of sensitive
information opening the door for state inference techniques.
Many works [14], [38], [47] investigated these aspects
showing many vulnerabilities of the Android components.
For instance, Possemato et al. [38] detected several vulner-
abilities, among which one that allows an app to collect
statistics of other apps through the getProcessMemo-
ryInfo API of the ActivityManager without any
special permission.

To mitigate these attacks, Google has deployed several
patches and countermeasures. First, Android strengthened
the data returned from the APIs removing all the sensitive
information of other apps. For instance, the getRun-
ningTasks and getRunningServices APIs of the
ActivityManager class returned the list of the tasks
and services currently running in a device. These methods
have been deprecated from respectively Android versions
5.0 and 8.0; nowadays, they return only the information
of the caller app (and well-known non-sensitive data). In
Android 7.0, access to procfs is limited to very few
harmless files. As a result, to the best of our knowledge,
all documented file system-based state inference attacks
no longer work on modern versions of Android. However,
despite these mitigations, some recent works have shown
that phishing attacks are still feasible [6], [10].

On the defensive side, some works have been proposed
over the years. [33], [39], [55] tried eradicating the phishing

problem on Android, preventing a malicious user from
spoofing the UI. The authors do not avoid a malicious app
to perform the state inference attack on which the phishing
is based but block or react to malicious UI that seems
legitimate. Only “LeaveMeAlone” [58] tries to detect and
block a malicious app that performs inference attacks (or
tries to steal sensitive data) by analyzing the usage of
shared resources. This tool leverages static information
(e.g., permissions) and the procfs files to monitor the
device apps, but it will not work on Android 7.0 and newer
due to the enforcement of the procfs.

Finally, in 2016, Ahn et al. proposed inishing, an
inotify-based user interface (UI) phishing attack, which at
the time of writing is the work most closely resembling
ours. They show how malware can monitor access patterns
(i.e., a sequence of file system events), enabling it to
detect the transition from one UI screen to another. Once
the access pattern events are triggered during a screen
transition, the malicious app needs to check whether
the target app generated it. The authors retrieved the
PID of the target app through the getRunningApp-
Processes API (assuming it is already running). They
verified whether it is in the foreground by inspecting the
files in the procfs. However, since Android 7, Google
has significantly restricted access to the procfs folder,
and only system apps can obtain the list of the running
processes (and their pid). These restrictions make this
attack infeasible, but as we will show, there is still room
to abuse inotify.

4. The use of inotify among malware

To verify the novelty of our attack, we investigated if
and how current malware exploits inotify. To this aim, we
collected and analyzed 10, 000 Android malware of 2021
from AndroZoo [4]. We considered malicious the samples
with at least five anti-malware detections on VirusTotal.

For this type of study, it is crucial to distribute the
malware families as uniformly as possible; therefore, we
considered a maximum of 5% for each family. Given that
Androzoo does not indicate the family of its malicious
samples, we downloaded each sample’s VirusTotal report
and leveraged AVClass2 [44] to determine the correspond-
ing family. Finally, AVClass2 classified a total of 140
families and 8400 samples as Singleton – the term used to
define the samples for which it was unable to determine
the family. We report the percentages of the five most
frequent families and the Singletons in the second row of
Table 2 in Appendix A.

As explained in Section 2.2, an app can install an
inotify watch from both the “Java” and the native layers.
To account for either case, we developed two software
components to analyze Android apps statically. The goal
of these components is trying to resolve the arguments –
performing a backward iter- and intra-procedural taint data
analysis – of the API functions that interact with inotify
to determine the path of the file that will be monitored.

Java layer. The first component is an extended version
of the Soot [52] framework to analyze the DEX files and
resolve the constructor’s argument of the FileObserver
objects that takes in input the path of the file to monitor.
When the tool resolves a java.io.File object, it per-
forms a backward taint analysis until it reaches an Android

API method invocation (e.g., getExternalFilesDir)
or a string. This procedure is repeated recursively if
it finds another File constructor. The output of this
component may be a string with the full file path or a
combination of Android-specific APIs. For instance, if an
app installs an inotify watch on the file named example
in its folder on the external memory, and it uses the
getExternalFilesDir method (of the android.-
content.Context class) to retrieve the path of the
external memory, the output is the concatenation of the
Android API and the file name: android.content.-
Context.getExternalFilesDir()/example.

The analysis reveals that 7.4% (744/10,000) of our
malicious apps, distributed over 65 different families,
instantiates FileObserver objects. Among the 744
samples, we measured 57.8% (430/744) Singleton, and we
did not observe a predominant family.

Most resolved paths depend on Android APIs to
return the path of “private” folders, where the app
can place persistent files it owns. We listed them and
their prevalence in Appendix D. Given that in almost
all these cases, the malware installs a watch on a file
under these folders, there is no particular interest in
monitoring files of other apps. Manually looking at folder
and file names, we found that these cases are mainly
analytics libraries. For instance, the Yandex [8] analytics
library monitors the crashes of an app watching the file
appmetrica_crashes in the app’s file directory (i.e.,
android.content.Context.getFilesDir()/-
appmetrica_crashes). The most common target is
the folder /data/anr, which was detected in 22.2%
(165/744). When the UI thread of an Android app is
blocked for too long, Android stores logs of the “App Not
Responding” (ANR) errors in that folder.

The only pattern we found where the samples seem to
monitor file system events generated by folders shared with
other apps was present in the 4.2% (31/744) of the samples
across eight families – disregarding the Singletons, the
most prevalent (5/31) is the trojan triada. Such samples
retrieve the path of its folder in the external memory and
install an inotify watch for all the parent folders. However,
this code belongs to the Vungle [53] library for advertising
and monetization.

Finally, in some cases, the tool could not recover
the path because I) the sample concatenates strings at
runtime (26.7%), II) it is passed through an (external) Intent
(0.3%), or III) it is read from the shared preferences (0.1%).
Therefore, we manually reverse-engineered some samples,
one for each family, and then moved to the Singletons.
During this manual investigation, we did not find any new
malicious pattern.

Native layer. The second component is a custom Ghidra [1]
plugin, and it analyzes the native libraries to identify the
calls to the inotify_add_watch API. In the malware
dataset, 87.4% (8,742/10,000) of the samples contain native
code. The analysis revealed that 77.0% (6,731/8,742) of
the malware samples use the inotify API in just 339
native libraries. Given that we did not find a predominant
family (third row of Table 2), this low number of libraries
w.r.t. a high number of samples is because these samples
share such libraries. Most are analytics libraries, such as
Umeng [57], that monitor files in their private directory

to identify app failures.
The analysis of native libraries proved to be more

complicated than the Java one; our tool failed to resolve the
argument to the inotify_add_watch function in more
than 40% of cases because the string was not statically
available. Therefore, we resorted again to manual reverse
engineering, using the same strategy discussed above,
stopping when we did not notice new patterns emerge. With
this mixed manual and automatic approach, we uncovered
two “malicious” cases. First, an anti-debug strategy that
we often, but not only, found implemented in the Jiagu
packer. To give a practical example, we analyzed one
sample1 that creates a new thread, and from this thread, it
uses inotify to monitor the mem and pagemap files in the
/proc/<pid> folder. In this way, it checks in real-time
a change in the memory mapping of the app process to
detect the presence of a debugger.

Second, we observed some apps that monitor if specific
files inside their installation folder are deleted (e.g., the
base.apk). In this way, they can identify if the app is
about to be uninstalled and run extra code; for instance,
some samples2 open a web page. Interestingly, this tech-
nique is the one that comes closest conceptually to what
we found in our results, and this shows again that allowing
to monitor files within the installation path opens the door
to state inference.

RQ1. Malware uses inotify in both Java and native code,
but in most cases, we observed non-harmful operations,
such as reacting to an app crash. We have encountered
this phenomenon because malware is often produced by
repackaging popular apps with malicious components.
Therefore, we mainly detected the use of inotify by
analytics libraries that can also be found in goodware.
Only 4.2% of the samples try to monitor file system
events generated by folders shared with other apps, but this
behavior is again related to a famous advertising library.
We found no samples installing an inotify watch on a file
inside the installation folder of another app; in general,
we found no cases suggesting the use of inotify for a state
inference attack. However, we found two interesting cases
in native code where malware abuses inotify: an anti-debug
technique and a “last resort” to execute code when they
are uninstalled.

5. Analysis Tool

While comforting from an end user’s perspective, the
fact that malware does not seem to leverage inotify for state
inference attacks poses interesting questions. For example,
have malware authors never come up with this attack idea,
or do they instead not implement it because it does not
work in practice?

While answering such questions on malware authors’
behalf is rather tricky and far beyond the scope of this
paper, we can evaluate the feasibility of employing inotify
for state inference at scale.

For this purpose, we designed inoTool: a tool, written
in about 2k lines of Python, that can prove whether an
Android app is vulnerable to inotify-based state inference.

1. SHA-1: 9f02e7edbbf9aa8874fc4e93dbb50955d52793ee
2. SHA-1: a1604d3705511099a75bc522421c68bb450140f6

inoTool exposes three functionalities that capture and
analyze an app’s file system behavior as discussed in the
remainder of the section.

5.1. Function #1 – logEvents

This function takes as input an APK file and computes
the list of the file system events (we will refer to this list
as FSFootprint) generated by the APK during its execution.
We represent a file system event as the pair (event type,
path), where event type is the inotify event corresponding
to the file system action performed on the file at path (e.g.,
the event IN_MODIFY encodes a file content modification).
Furthermore, inoTool stores the mappings between the
app’s package name and its FSFootprint.

At first, inoTool installs the app to analyze and runs
it for the first time without any monitoring. The idea
behind the first “dry-run” of the app is to avoid capturing
file system activities that are just the result of some post-
installation setup operations. For example, an app that uses
an SQLite database stored on the device’s file system. The
app likely creates this database only once, when it starts for
the first time. If we considered the first run representative
of the subsequent execution, we would wrongly expect it
to create the SQLite file each time.

It is only while running the app a second time that
inoTool collects the file system behavior of the app over a
time span of 5 minutes. During this second run, inoTool
also stimulates the app user interface, thus increasing its
code coverage. For this purpose, we used ARES [41], a
black-box tool that uses Deep Reinforcement Learning to
test and explore Android apps.

We developed our file system events monitor as an
eBPF program that hooks all the system calls (syscalls from
now on) related to file system events that can generate an
event. We reported the complete list of monitored syscalls
in Table 3 in Appendix. eBPF (extended Berkeley Packet
Filter) [29] is an in-kernel virtual machine that provides
an interface to extend the capabilities of the Linux kernel
with user-provided code. It has been available in Linux
since version 4.4 and provides two advantages compared
to adding new code directly in the kernel. First, the eBPF
code can be updated without recompiling the entire kernel.
Second, the eBPF VM code does not support potentially
dangerous constructs (e.g., loops with non-fixed iteration
counts) and undergoes a strict verification phase before
execution, making it less prone to bugs. eBPF programs are
event-driven: the eBPF code is executed only in response to
specific events that include syscalls, making it a powerful
tool for the syscall-based monitoring of Android apps.

The eBPF program is written in about 1, 100 lines of
C and leverages kernel tracepoint and Kretprobe
subsystem for monitoring syscalls. Tracepoints allow the
eBPF program to intercept the beginning of each syscall
and parse its input parameters. Kretprobes, instead, are used
to monitor the return values and track the opened/closed
files for each process, which is crucial because it allows
inoTool to interpret syscalls that accept file descriptors as
input parameters. For instance, the first parameter of the
read syscall is the file descriptor of the file from which
to read. Our eBPF program keeps track of the mapping
between file descriptors and file paths for each process in
the system during the app’s runtime under analysis.

To start and stop the eBPF program each time a new
app runs, we created a second program that registers/unreg-
isters the kernel hooks and queries the eBPF program to
retrieve the recorded events and save them into a JSON file.
The second program is written in Golang (about 700 lines)
and leverages the libbpfgo library [45] for interacting
with the eBPF programs from userspace.

Finally, the function analyzes the syscalls recorded so
far and converts them to a list of file system events (i.e.,
FSFootprint). While, in most cases, mapping a syscall to
an inotify event is straightforward, we had to cope with
some special cases. The interested reader will find all the
details in Appendix B.

5.2. Function #2 – generateSignatures

This function takes as input a set of apps K (cardi-
nality |K|), and their respective FSFootprint generated
by logEvents. It returns the FSSignatureK for each app,
that is the set of file system events that our tool recorded
uniquely for the startup of that APK; namely, it considers
all the unique startup events of that APK’s FSFootprint
w.r.t. the other APKs in the set K. Notice that the choice
of the apps in K determines how reliably an attacker can
use the FSSignatureK . By tailoring K to the apps installed
on the device, she is targeting the attacker can ensure that
a file system event uniquely identifies an app’s startup on
that device.

Determining an app startup. Since our attack aims
at identifying an app startup, while constructing the
FSSignatureK , we want to consider only those events
generated during the startup phase. However, determining
when an app startup ends presents several challenges.
Naive approaches like monitoring the screen until the
user interface stops changing are not an option because
apps showcase very different UI when they start (e.g.,
some have long-loading screens with animations, while
others show advertisements). Relying on triggers in the
app’s code is also not feasible due to the heterogeneity
in the UI frameworks Android apps use (e.g., Cordova,
Xamarin, Flutter, WebView, etc.). For the purposes of this
work, we resorted to an experimental human-in-the-loop
approach to determining when an app finishes loading.
In particular, we randomly selected and ran 100 apps in
our emulated environment while recording the emulator’s
screen. We then manually inspected the recordings and
marked in each of them the time at which, according to
our human understanding of the app’s context, the startup
process ended. The minimum startup time (rounded down)
we measured was four seconds, which we then used to
mark the end of the startup process for all the apps. We
chose the shorter time conservatively to ensure we do not
consider already started apps.

More precisely, the FSSignatureK (S) of the n-th app
is computed as:

Sn = F+
n \

⋃
i̸=n

Fi ∀e ∈ F+
n , te ≤ 4 seconds

where Fk represents the FSFootprint of the k-th app, and
F+
k its subset that contains only the startup events (i.e.,

events that occurred in the first four seconds). It is worth
noticing that to compute the FSSignatureK , from the F+

k ,

we filter out all the events in the FSFootprint of the other
apps in K, regardless they occurred at the startup or during
the apps’ runtime. This procedure allowed us to avoid the
case when a file operation performed by app A at its startup
is also performed by app B at its runtime. Therefore, if
an app has a non-empty FSSignatureK , monitoring one
event of its signature is a good indicator to infer when it
is starting up.

5.3. Function #3 – signatureVerifier

By construction, the FSSignatureK of an app contains
those unique events recorded during its startup only; i.e.,
the same events did not occur during other apps’ execution.
This means that an attacker capable of intercepting any
event in an app’s FSSignatureK can mount an unambiguous
state inference attack, using such events as an oracle.

This function, which takes as input an APK and
its FSSignatureK , aims to assess whether it is indeed
vulnerable to inotify-based state inference attacks or, in
other words, whether an attacker can leverage an app’s
FSSignatureK to mount a state inference attack. We
accomplish this by mimicking an attacker’s behavior using
an a posteriori approach: we refine the FSSignatureK using
the events we can confirm that can be used in the attack.
Thus, the result of this function is FSSignature∗K , a subset
of the FSSignatureK . In the end, if the FSSignature∗K is
not empty, we declare such an app vulnerable.

We implemented our attack in an Android app we
named appSignVerifier that attempts to intercept any event
in an app’s FSSignatureK . Under the hood, appSign-
Verifier uses inotify through the FileObserver class.
Before registering an inotify watch, appSignVerifier checks
whether the target file exists. If that is the case, the watch
is registered directly on the file. In contrast, if the file does
not exist, appSignVerifier registers the inotify watch on its
parent directory to intercept the file creation.

The entire verification stage adopts the following
workflow. Similarly to logEvents, the signatureVerifier
installs the app under test and starts it for the first time. It
then provides the app’s FSSignatureK and its installation
path to the appSignVerifier, which sets an inotify watch on
the events in the app’s signature. appSignVerifier needs the
installation path because events in the FSSignatureK may
be related to files in this directory; however, this path may
change across two installations. The function starts the
target app for a second time, allowing the appSignVerifier
to collect the inotify events. After the app startup, it
stops the appSignVerifier, which dumps the collected file
system events on mass storage. Then, it prunes the list
of recorded file system events of any entry not in the
FSSignatureK . This allows to filter out those events that
the appSignVerifier accidentally recorded while monitoring
any file creation event in a directory3.

At the end of the analysis, inoTool produces three
sets of file system events for each app, for which the
following relationship holds: FSFootprint ⊆ FSSignatureK
⊆ FSSignature∗K . The cardinality of an app’s FSSignature∗K

3. For example, if the FSSignatureK of an app contains the path
/example/uniq.txt, but this file does not exist before the app starts,
appSignVerifier monitors the folder /example/, in which, however,
other uninteresting file system events may occur. These events should,
thus, be discarded.

Table 1: Cardinality statistics with |K| = 4,863

Set Min Max Avg Stdev Median
FSFootprint 17 3087 463.2 192.1 457
FSSignatureK 3 784 65.1 74.2 28
FSSignature∗K 2 61 6.8 2.6 7

equals the number of file system events in its FSSignatureK
that our appSignVerifier was capable of intercepting. There-
fore, an app’s FSSignature∗K is not the empty set if and
only if at least one of its file system events arises during
its startup only (that is, the same event does not take
place during any other app’s execution in a set K) and an
untrusted app can effectively intercept such event.

6. Experimental Evaluation

This section presents the setup under which we tested
a dataset of 4, 863 Android apps using inoTool, as well as
a preliminary and coarse-grained analysis of our findings.

6.1. Experimental Setup and Dataset

Our analysis system is based on the Android emulator
and runs Android version 12.0 (API level 31), equipped
with the latest Google Play APIs, thus implementing all
the latest security features. We equipped the emulator with
a dual-core 2.10 GHz x86-64 processor, 2 GB of RAM, 32
GB of internal storage, and a 16 GB emulated SD Card.

We built the dataset of apps to test by collecting
Android applications that are valuable and widespread
among Android users and that implement a relatively
heterogeneous set of functionalities. The first two charac-
teristics make these apps appealing targets for attackers,
which may profit from a vast user base. On the other
hand, the variety of functionalities ensures that the app
we analyze shows different behaviors. This prevents our
results from being skewed toward one particular type of
app and more representative of the average user’s device.
As reported by Google [24], Android users install, on
average, at most 35 apps spread over different categories.

We collected the 100 most downloaded free apps for
the 50 categories in the Google Play Store [19]. Among
these categories, some are particularly valuable, especially
for phishing attacks, such as finance and social media apps.
In total, we could install 4, 863 apps because some of them
were incompatible with our emulator.

6.2. Preliminary Analysis

Table 1 shows aggregate data about the FSFootprint,
FSSignatureK , and FSSignature∗K that inoTool generated
for each app.

On average, the cardinality of an app’s FSFootprint is
seven times that of its FSSignatureK . This means that, as
one may expect, most of the file system activity during an
app’s startup does not depend on the app itself but rather on
the implementation of the app startup process. For example,
to bootstrap any apps, the Android system must load
and read the /system/framework/x86_64/boot-
framework.art and /apex/com.android.art/-
javalib/x86_64/boot.art files, which contain the

ahead-of-time compilation result of some framework
classes. Nonetheless, roughly one in four file system events
are unique to the app, leaving room for inferring which
app is starting based solely on the file system activity.

While significantly (roughly ten times) smaller than
the FSSignatureK , the FSSignature∗K of an app contains,
on average, 6.8 file system events. As a reminder, these
are file system events that are not only specific to the
app but can also be monitored by a third-party application
using the inotify system. Much to our surprise, the
lowest cardinality among the computed FSSignature∗K is
two, meaning that all the apps in our dataset have a non-
empty signature and are susceptible to inotify-based state
inference attacks.

Upon further analysis, we found some file system
events common to the startup process of all the apps
we tested. Since they stem from the app startup process
implemented by the Android system, we define these events
as system-dependent.

An example of a system-dependent file system event is
the opening of the base.apk. This file is located in the
app’s installation directory. It is accessed by the Android
OS to retrieve its resources (e.g., the Manifest), resulting
in an IN_OPEN and an IN_ACCESS file system events.
Our analysis demonstrated that any program in the system
that knows an app’s installation path could intercept these
two events on such a file. This is possible because of the
permissive access control rules applied to this file. From
a DAC point of view, any app’s base.apk is world-
readable, while SELinux MAC rules explicitly allow it
(discussed in Section 8).

Other system-dependent events concern the
base.odex and base.vdex files, which are also
located in the app’s installation path. These files are
the byproduct of the ahead-of-time compilation process
implemented in the Android RunTime that translates the
app bytecode into machine code at installation time. As
such, the Android framework has to access and load
these files in the address space of the newly spawned
app; in fact, the former contains the machine-compiled
code, while the latter stores data designed to speed up
execution.

App-dependent events represent the other side of the
coin compared to system-dependent ones. These file system
events are tightly related to an app’s behavior rather
than the implementation of the bootstrap process in the
system framework. App-dependent events may concern
files located anywhere on the file system. In Appendix C,
we reported the complete distribution of the app-dependent
events throughout an Android file system.

Although not as common as their system-specific
counterparts, the most common location of app-dependent
events is still the app’s installation directory (/data/app
row in Table 4), in which 17.2% of apps generate at least
one event. Examples of such events are those related to
native libraries shipped with the app and placed in the
lib directory in the installation path.

1.5% of apps generate at least one event in the /stor-
age/ top-level directory – also known as external storage
– which contains app-specific sub-directories where apps
can place their persistent files. Notably, external storage
comprises two parts. The first is a mount point at which
the Android system mounts external mass memory devices

(e.g., SD cards), which account for roughly 45% of the
events inoTool detected in the external storage. On the other
hand, the second is not backed by any external memory
device and is created by the system to provide external
storage functionalities without external memory support.
This second part accounts for most of the events inoTool
reported in external memory.

File system events in other subdirectories are gen-
erally less common and affect less than 1% of the
total apps in our dataset. Nonetheless, an attacker can
leverage them to mount for state inferencing purposes.
Interesting examples of events in these paths concern
the /system top-level directory. A peculiar case is
that of an app that interacts with the /system/priv-
app/InputDevices/InputDevices.apk file to
check if a particular input device is available.

7. Attacker Models & Attack Scenarios

Analyzing the results obtained by testing the 4, 863
apps through inoTool, we identified three distinct sets of
capabilities that an attacker needs to perform an inotify-
based state inference attack. In this context, a capability
may be an Android permission or any information about
the installed apps. In general, obtaining a specific capability
may depend on I) the version of the Android system and II)
the API level that the malicious app targets. The impact of
the former on the attacker’s capability is relatively intuitive:
different versions of Android implement slightly different
functionalities and security models. To fully appreciate
the latter’s role, one needs to consider how Android deals
with the app’s backward compatibility. At compilation
time, an app developer can choose which version of the
Android framework the app is intended to run. If the
targeted version is “too old,” the OS will refuse to install
the app. On the other hand, if the targeted version is
still supported, the system emulates the targeted version’s
behavior and security model. For instance, more than 68%
of the apps in the dataset target API 30, even if, at the
time of writing, the latest Android version is 13 (API 33).
As such, most of the apps we analyzed are not subject to
the latest and more restrictive security model.

In the remainder of the section, we will assume that
the attacker has paved her way to install her malicious
app on the victim’s device – a basic premise for any state
inference-based phishing. While this may happen in various
ways and represent an interesting research field in its own
right, we will not develop this topic further as we consider
it orthogonal to the research questions this work addresses.
Notice, however, that we assume the malicious app to be a
regular Android app, thus subject to the Android security
model for untrusted apps, with restrained access to the
device’s resources.

7.1. Attack #1

As we saw in Section 6, while starting any app, the
Android system accesses the app’s specific files (e.g., the
base.apk) in its installation directory. In other words,
an attacker able to monitor those files can target any app
on the system. Luckily, an app’s installation path is not
known a priori (part of its name is randomly generated
at installation time), and, at least in theory, it can only

be retrieved through the PackageManager service. Before
version 11, interacting with this service did not require any
permission, allowing all apps on the device to access each
other’s installation path. To limit Software Discovery [12]
(i.e., listing installed apps and their metadata), Android
11 introduced the concept of package visibility [21]. In
practical terms, under the new security model, an app must
either list the metadata of all third-party apps it needs to
access (through the <queries> tag in its Manifest) or
request the QUERY_ALL_PACKAGES permission. From a
malicious actor’s perspective, neither of these mechanisms
is ideal. For what concerns the first option, an app whose
Manifest targets many apps is rather suspicious and incurs
higher risks of being banned by the marketplace. Similarly,
requesting the QUERY_ALL_PACKAGES permission is not
a sustainable plan for an attacker. In fact, Google states that
any app requesting this permission must undergo manual
scrutiny before being accepted on the Play Store [21].

However, there are two loopholes that a malicious
app can leverage. The first takes advantage of Android’s
backward compatibility system. The package visibility
mechanism does not apply to apps targeting API level 30 or
lower, which can retrieve the installation path of any app in
the system without any permission. The second technique
consists in (ab)using one feature of the <queries> tag
that gives access to any app that implements a particular
intent filter [26]. The ruse consists in specifying an intent
filter, as shown in Listing 1.

Listing 1: queries tag to interact with all applications
<q u e r i e s> <i n t e n t>
<a c t i o n a n d r o i d : name=” a n d r o i d . i n t e n t . a c t i o n .MAIN”/>
<c a t e g o r y a n d r o i d : name=” a n d r o i d . i n t e n t . c a t e g o r y .

LAUNCHER”/>
</ i n t e n t> </ q u e r i e s>

This allows querying all the apps with a “launchable”
activity – i.e., those presenting one entry in the Android
launcher UI – which is the case for practically every com-
monly used app. While conforming to the documentation,
this stratagem contradicts the app separation principle at
the core of the Android security model. We also reported
this bug to Google, which acknowledged its security
implications and said that the issue had already been
reported but not yet made public.

7.2. Attack #2

The second attacker model we envisage assumes that
the loopholes we introduced in Attack #1 are no longer
available, making monitoring the apps’ installation path
impossible for an attacker.

In this new scenario, our attacker chooses a dataset of
apps as large and heterogeneous as possible and similarly
analyzes them to that presented in Section 6, embedding
each app’s FSSignature∗K in her malicious app. In analyzing
what an attacker can achieve by implementing this strategy,
we will refer to the data we collected using inoTool. The
files in the FSSignature∗K generated in our experiments can
be divided into two categories: those that can be accessed
via the READ_EXTERNAL_STORAGE permission, and
those that are world-readable, i.e., they do not require
any permission at all to be monitored.

READ_EXTERNAL_STORAGE permission. Earlier An-
droid versions used this permission to restrict access to the
external storage. Android 10 (API 29) introduced a new file
system paradigm called scoped storage [23] that divides
the external storage into private and shared portions. As the
names suggest, while the former is app-specific, the latter
contains data shared across all the apps in the system and is
further divided into media and non-media content. The new
paradigm redesigned the READ_EXTERNAL_STORAGE,
allowing an app to read only other apps’ shared media
content. Consequently, it drastically changes the benefit
an attacker gains by obtaining the permission in question.
While on older versions of Android (API < 29), this
permission allows identifying correctly apps that access
any file in the external storage, on newer versions, it only
allows detecting those that access shared media files.

Based on our dataset, this discrepancy translates into
roughly ten times fewer apps being vulnerable while
running in Android 10 or newer (0.7% of the dataset)
w.r.t. older versions (18.1%). These figures do not include
world-readable files (discussed below); as such, they can
be considered the permission’s actual contribution.

World-readable files. We discovered something peculiar
by analyzing the world-readable files appSignVerifier
managed to exploit. While on paper, files in the “private”
storage of an app are accessible exclusively by the app
itself, in practice, it is still possible to monitor some of
them through inotify (Appendix E provides insights on the
circumstances under which this is possible).

To make things worse, unlike the installation direc-
tory, an app’s private storage path does not contain any
randomly-generated part, making it trivial to infer. In other
words, in a bizarre turn of events, the scoped storage’s
implementation breached the tight access control that
regulated the external storage in previous versions of
Android. In our dataset, 0.9% of apps are vulnerable to
state inference attacks that do not require any particular
capability from the attacker. Among such apps, we find two
famous instant messaging (WhatsApp and JioChat) and a
money transfer (Venmo) app. They have large user bases,
having been downloaded at least 10M times each; therefore,
unauthorized access to user accounts on these platforms
may have severe privacy and financial repercussions.

7.3. Attack #3

The main advantage of the attack strategy we just
described is that the pre-computed FSSignature∗K can be
embedded in a single malicious app and shipped as is
to the victim’s device. This strength, however, comes at
the expense of overapproximating what the vulnerable
applications are on an actual device. When computing the
file system signatures on a dataset K as large as the one
we used in our experiment, the attacker implicitly assumes
that all the apps in the dataset could be installed at once
on the targeted device. This is obviously not the case for
the average Android device that, according to Google [24],
tends to have around 35 apps installed at a time.

Intuitively, narrowing down the cardinality of K,
increases the number of apps with a non-empty
FSSignature∗K . The sweet spot for an attacker is to choose
K as the set of apps installed on the target device. Doing

this, in fact, maximizes the number of apps that are
vulnerable to state inference attacks on that specific device.

Thus, the third attack strategy we introduce consists
in scouting the apps installed on the infected device,
computing the apps’ FSSignature∗K accordingly with the
aid of a remote endpoint, and employing them to perform
state inference attacks.

The sole capability the attackers must acquire to
implement this strategy successfully is obtaining the list
of installed apps on the device. Similarly to what we
described in Section 7.1, nowadays, the most trivial way
to do that would be through either the QUERY_ALL_-
PACKAGES permission – which is too suspicious to be
considered a viable option – by defining the queries tag
or targeting API level 29 or below. One last option at the
attacker’s disposal is leveraging an information disclosure
vulnerability, like the one we discovered in our research.

Information Disclosure Vulnerability. The introduction
of scoped storage loosened the access control on external
storage, allowing otherwise unprivileged apps to mount
state inference attacks. In particular, we noticed that the
paths where each app saves its private files are pre-
dictable, following the pattern <external storage
path>/Android/data/<package name>. For ex-
ample, on our test device, the private files of
the famous Discord app (whose package name is
com.discord) were located in the /storage/em-
ulated/0/Android/data/com.discord/ direc-
tory. Unlike the app’s installation path, the private storage
path does not contain any aleatory component, making
it trivial for an attacker to infer. Simply invoking the
getExternalStorageDirectory API (which does
not require any permission), an app can retrieve the
<external storage path>, while the target app’s
package name can be determined by statically analyzing
its APKs available on the marketplaces.

What makes private storage vulnerable, however, is
the fact that the app’s files are at predictable locations
and the permissive access control rules that the system
applies to them are not enough. The data directory in the
external storage is marked as not readable, not writable,
but executable for any untrusted app. Under the POSIX
convention, this combination of flags denies anybody but
the directory’s owner and group to list its content and create
files in it. However, the executable attribute allows anybody
to traverse the directory. Therefore, an untrusted app – even
without the READ_EXTERNAL_STORAGE permission –
can check if a specific file exists in the data directory
using of the newfsstat syscall or, more conveniently,
through the java.nio.file.Files.exists Java
wrapper. More specifically, when querying for an existing
file, the syscall (and the wrapper) returns successfully. To
an extent, this primitive can circumvent the lack of listing
privilege on the directory. Thus, an attacker can maintain
a list of package names of apps they want to target and
systematically probe each of them.

If such a folder is in the data directory, the attacker
is sure that the corresponding app is installed on the device
because all its private folders are removed whenever an
app is uninstalled. In addition, the system creates the app’s
private folder on the external storage whenever it invokes
one of the several methods (complete list in Appendix D)

to retrieve its private location for the first time.
By statically analyzing the apps in our dataset, we

discovered that almost the entire dataset (> 99%) imports
at least one of these methods. In particular, the an-
droid.content.Context.getFilesDir method
is the most prevalent and can be found in 98.7%
(4, 632/4, 863) of the apps in our dataset (see Appendix D
for the full list). However, the static analysis does not
guarantee that every one of these apps invokes any of
these methods. This result should be considered an upper
bound of the share of apps that use external storage and are
thus vulnerable. To estimate a lower bound, we measured
the number of apps for which inoTool registered a file
system event in the corresponding private folder, and we
obtained 49% (2, 383/4, 863).

In conclusion, we can estimate that 49-99% of the apps
in our dataset can be detected on a device without per-
mission. This information disclosure vulnerability partially
thwarts Google’s efforts to restrict third-party apps from
Software Discovery.

Performance of the refined attack To estimate the
likelihood of success of an attack tailored to the apps
installed on a device, we relied on random sampling apps
from our dataset and computing the number of vulnerable
apps in each case. For each simulation, each app’s chance
to be selected depends on the downloads from the Play
Store, so the ratio between the two apps’ download counts
equals the ratio of their chances to be selected. For example,
the eToro and FlyerMaker apps have been downloaded by
10M and 1M users, respectively; thus, the former is ten
times more likely to be selected than the latter.

We varied the cardinality of the sampled apps from 15
to 100, increasing it by five each time. We created 5, 000
unique app sets for each cardinality, i.e., 5, 000 sets of
cardinality i. For each set, we executed the generateSigna-
tures and signatureVerifier functions of inoTool to measure
the number of vulnerable apps to our attack with this
particular device configuration.

Figure 1: Capability for different Ki values

Figure 1 shows the results of this experiment, divided
according to the permissions and Android version required
to monitor files with inotify. The lines are averages of the
percentages of vulnerable apps, while the faded areas are
the standard deviation.

As expected, the number of vulnerable apps decreases
with the number of apps installed. Alarmingly, on devices
with an average number of installed apps (35, according to
Google [24]) running modern Android versions, an attacker
can successfully target half of the apps, even without declar-
ing any permission. While performing slightly better when
targeting API level < 29, under modern security models,
the READ_EXTERNAL_STORAGE does not significantly
affect the likelihood of carrying out the attack w.r.t. to
targeting world-readable files only.

7.4. Final Considerations

The following is a summary answering RQ2 and RQ3.
We identified three types of attacks, which differ according
to the attacker’s capabilities. In case an attacker can monitor
a system-dependent file system event (Attack #1), the
opening of the base.apk is the best candidate. To this
aim, she needs to know the installation path, and the
only ways to get it are: by requiring the QUERY_ALL_-
PACKAGES permission, abusing the queries tag, or
targeting SDK ≤ 29. This attacker is the most powerful
because it works with 100% of apps regardless of the
Android version and the device configuration.

In case an attacker cannot retrieve the installation
path, she can pre-compute a FSSignature∗K with a large
K analyzing as many apps as possible to find peculiar
behaviors that enable an attacker to perform an inotify-
base state inference attack (Attack #2). Our evaluation with
|K| = 4, 863 found that an attacker can target 0.9% of the
app by monitoring only world-readable files. Obtaining the
READ_EXTERNAL_STORAGE permission, the number of
vulnerable apps increases to 1.6% and 18.8% for Android
10 or newer and older versions, respectively. However,
these values also consider the contribution of the world-
readable file since an attacker can always monitor them.
Thus, the actual contribution of this permission is 0.7% on
Android 10 or newer and 18.1% on older versions. Despite
these low values, this is the most general scenario: an
attacker can always attempt to use this approach to search
for peculiar events in the FSFootprint of the target app.

Attack #3 is a refinement of the previous attack strategy
that an attacker can adopt if she can get the list of installed
apps, e.g., by using the information disclosure vulnerability
we reported. Our experiments suggest that in a typical
device with 35 apps installed on average [24], the attacker
can target almost half of the apps without permissions.

Finally, the Android version largely influences the num-
ber of vulnerable apps and the attacker’s capabilities. First,
the metadata of the installed apps (e.g., the installation
paths) can be obtained without any permission on a device
running Android < 11; on Android ≥ 11, an attacker
has to update the Manifest file appropriately. Second,
the number of apps vulnerable requiring the READ_EX-
TERNAL_STORAGE permission strongly depends on the
version of the OS.

We summarized the workflow of the different attacks
in the flowchart in Figure 2, and for each case, we report
the percentages of the vulnerable apps in our dataset.
The percentages reported for Attacker #3 consider the
average case of the typical device with 35 apps installed,
as described above.

Figure 2: Flowchart summarizing the attack models

7.5. Use Case with Contextual Notification

To demonstrate the impact of an inotify-based state
inference attack, we developed a toy app implementing
a full zero-permission phishing-like attack targeting the
eToro (com.etoro.openbook) app. According to the
Play Store, this app counts tens of millions of installations
and provides access to a trading platform, making it the
perfect target for a malicious actor.

The FSSignature∗K we computed for this app con-
tains the file system events for opening (IN_OPEN) and
reading (IN_ACCESS) the /system/framework/-
android.test.runner.jart file. The correspond-
ing file is accessible by any app on the system, including
unprivileged apps, without requiring any permission.

Figure 3 shows the attack flow in three steps. Our
malicious app registers an inotify event at the beginning of
its execution, using the FileObserver API When the
user launches the eToro app (Step 1 in Figure 3), the inotify
callback is triggered. At this point, our malicious app does
not immediately create an activity that mimics the eToro’s
one. In the modern Android system, in fact, starting an
activity without the user’s interaction is strictly regulated
since this type of action has long been used to implement
UI hijacking. The only viable way to implement such
behavior is by obtaining the SYSTEM_ALERT_WINDOW
permission, which has been ranked as privileged after
previous works demonstrated its malicious potential [16].
This fact did not stop malware authors from using it; e.g.,
56.9% of the samples (5,692/10,000) among the malware
we used in this study (Section 4) require it, while in
the case of benign apps (Section 6) 8.6% (431/4, 863).
However, implementing our phishing attack using this
permission defeats our purpose of showcasing how a
complete permission-less phishing attack.

Xu et al. already proposed using the notification service
on a mobile phone to launch phishing attacks [56], and
we decided to refine this idea. Instead of requiring the
abovementioned permission, our malicious app opts for dis-
playing a contextual notification (Step 2 in Figure 3), trying
to lure the user into initiating a fake update process for their
eToro app. A contextual notification, while unexpected,
is not necessarily suspicious from the user’s perspective.

Figure 3: Flow of the attack with a contextual notification

In this case, the app may have found an available update
while loading and asked permission to install it.

Since it mimics the target’s look&feel, for the user is
very difficult to distinguish our malicious update prompt
from a regular eToro notification. Step 2 also shows how le-
gitimate and phony notifications render when the malicious
app targets different Android operating system versions.
In the first case targeting an older version of Android, the
forged notification is practically impossible to distinguish
from a legitimate one because the attacker has complete
control of the UI. While targeting Android 12, instead, the
user’s only chance to understand that the notification is not
genuine involves expanding the notification4. As the Figure
shows, under these circumstances, the user can read the
name of the apps that generated the notification – which
is, nevertheless, attacker-controlled, as we emphasize in
our example.

Once the user clicks on the contextual notification
(Step 3 in Figure 3), our malicious app can effectively take
control of the UI system and finally creates the activity
that asks the user for their credentials.

RQ4. During our analysis, we discovered several loopholes
that grant an attacker different capabilities to perform
a state inference attack and mount a practical phishing
attack. Moreover, we highlighted that a malicious actor
can still perform this attack without particular capabilities
by monitoring world-readable files and presenting the user
with a contextual notification. An attacker can mount the
attack assuming that she controls an untrusted app with
no permissions, as we showed with our malicious app.

8. Mitigations

Even if we have shown that our attack also works in
case the attacker cannot monitor files in the installation
path, this capability is the cornerstone of our work that
Google has acknowledged. Therefore, it is evident that the
primary fix is to avoid untrusted apps from watching files

4. Starting with Android 12 (API level 31), apps are no longer able
to create fully custom notifications [25]. The system applies a standard
template instead.

in the installation path, even on their own, because we
have also noticed malware abusing it to execute code when
uninstalled. To propose a solution to this vulnerability, it
is imperative to understand the root cause that allows an
attacker to exploit it. Given that Android uses SELinux to
enforce MAC which uses a “default-deny” approach, as
explained in Section 2, there must be rules that explicitly
allow monitoring of the installation folder.

Watching the installation path. As a first step, we
inspected the file where SELinux kernel hooks are defined
to determine whether there was any filtering related to
inotify syscalls [17]. We identified that SELinux sets up
the selinux_path_notify hook for handling these
syscalls. In particular, the hook verifies if the context of the
subject contains the watch and watch_reads SELinux
permissions. The difference between the two lies in the fact
that watch_reads is only related to read-like events.

Then, we proceeded to check if any SELinux rules
would allow a third-party app (running in the con-
text of untrusted_app) to use inotify (i.e., allowing
watch or watch_reads) on files or subfolders of the
/data/app/ (which are labeled as apk_data_file).
It is worth noting that, on Android, the untrusted_app
context inherits all the appdomain rules. After retrieving
the compiled SELinux policies from our emulator (namely,
the /sys/fs/selinux/policy file), we searched for
these rules, and our hunch turned out to be correct. We
found two rules that allow the appdomain (thus, un-
trusted_app) to use both watch and watch_reads
on files and directories labeled as apk_data_file (i.e.,
files and directories in /data/app). A deeper analysis
allowed us to identify how both watch and watch_-
reads permissions are defined in the r_file_perms
and r_dir_perms macros [20].

As mitigation for this vulnerability, acting at the
SELinux level is the best choice as it ensures a strong level
of security and controls its granularity simultaneously. For
example, removing the POSIX world-readable permission
on the base.apk would be wrong. A typical use case
is antivirus software, which should be able to read this
file for its analysis. Therefore, we propose to create
a new macro (e.g., r_file_perms_nowatch) with

the same permissions of r_file_perms but without
watch and watch_reads. Then, this new macro can
be used to define the permissions of appdomain, and
thus consequently untrusted_app, for operating on
apk_data_file. This way, we can prevent an untrusted
app from listening for inotify events on files or directories
labeled apk_data_file without limiting access to this
file. However, we can always allow third-party apps to use
inotify, for instance, on files or directories belonging to
their sandbox, which are legitimate uses and scenarios. This
mitigation effectively eliminates the main vulnerability we
found while not compromising the stability and usability
of the system and introducing a highly fine-grained level
of control on which processes can use inotify and where.

We implemented this mitigation by modifying the
AOSP source, and our emulator works correctly but without
allowing monitoring files within the installation path with
inotify. However, only Google has the resources to test if
this change negatively impacts the whole ecosystem.

RQ5 – Third-party vendors. Since Possemato et al. [37]
have shown a significant difference in the security posture
of AOSP w.r.t. Original Equipment Manufacturers, we
investigated if their flagship smartphones allow using
inotify on the installation path. We collected the ma-
jor vendors’ latest ROMs (Samsung, Xiaomi, Motorola,
Lenovo, and Realme – Android 12), resulting in a dataset
of 11 images. Then, we extracted the content of each
ROM, looking for the SElinux policy files. However, the
/sys/fs/selinux/policy file is available only at
runtime; thus, we searched for the source file (that changes
depending on the customization). Finally, all the tested
ROMs inherit the default AOSP SELinux policy, which
is also vulnerable. We provide more technical details and
the list of the ROMs in Appendix F.

Information disclosure. Then, the second most common
paths found in the FSSignature∗K (Section 6) and the infor-
mation disclosure vulnerability (Section 7.3) are related to
the external storage (i.e., /storage/). These vulnerabil-
ities are easily solvable with POSIX permissions. All files
and folders in the private external storage should be read-
write-execut-able by the owner. At the same time, to solve
the information disclosure, the Android/data folder in
the emulated storage must not be world-executable. More-
over, to err on the side of caution, it would also be appropri-
ate to introduce a random string in the presence of folders
with the package name of the app (e.g., /storage/em-
ulated/0/Android/data/com.discord/), as is
already the case in the installation path.

RQ6. There are mitigations, and Android system de-
velopers should act in combination with SELinux and
POSIX permissions. SELinux policies should be extended
to prevent an untrusted app from being able to install
inotify watches in any installation path, and just the owner
should be able to operate on her private files in the external
storage. Moreover, similarly to the installation path, folders
named with the package name of an installed app can lead
to information disclosure or path traversal; therefore, they
should be accompanied by a random string. However,
we argue that comprehensive remediation does not exist
and Attack #2 can always be attempted. As in the Man-
in-the-Disk, the FSSignatureK of an app depends on its

specific behavior in combination with one of the other
installed apps, thus resulting in a complex environment
that is difficult to defend.

9. Limitations & Conclusions

Limitations. This work is not exempt from limitations.
First, the timespan considered as the startup time of the

app crucially determines the events in the FSSignatureK ,
and, thus, the attack’s impact. If the timespan is too short,
potential events are lost, limiting the attack; if it is too
long, the app may have already started when the attack
takes place, and the user may notice odd behavior.

Second, we collected the file system events stimulating
each app with ARES. Thus, we inherit the limitations of
the dynamic analysis [2], [36]: such traces may not be
complete because the analysis did not lead to specific code.

Third, some apps’ components (e.g., ads libraries) may
show different behaviors depending on the device on which
they are executed (e.g., actual device vs. emulator). In the
case of advertisement libraries, they are part of a shared
codebase that would likely not generate unique events.
These types of evasive checks are usually a phenomenon
typical of malware.

Fourth, in our analysis, we dwelt on monitoring a single
file, and given its effectiveness, we explored no further;
Ahn et al. [3], instead, focused on a sequence of events.
Although there is a margin for improvement, our work is
mainly concerned with showing the existence of this new
attack and how to stop it. Future works must consider the
actions Google will take after our disclosures.

Google Play Store. We have always referenced Google
Play Store’s policies and how they may limit our attack.
In particular, we emphasized that if an app that requires
the QUERY_ALL_PACKAGES permission (thus, looking
for the installation path) is uploaded to the Play Store, the
app’s use of this permission is subject to approval based
on specific security policies. Even assuming Google fixes
queries tag workaround, the level of such permission is
“normal” (i.e., automatically granted at installation time);
therefore, there are two crucial factors to consider.

First, all the restrictions imposed by Google on its store
have led malware authors not to upload their malicious
apps directly. They upload droppers to side-load the actual
malicious app with extended permissions [34], [48], [51].
Therefore, in such a scenario, our attack has no limitations.

Second, the Play Store is one of the many app distri-
bution channels. For instance, in China, the Google Play
market share is less than 4%, while MyApp (Tencent) [50]
currently holds 25% of the market. Therefore, such a
plethora of alternative markets (e.g., Samsung Galaxy
App [43], Amazon App Store [5], AppBrain [7], etc.)
imply that our attack has a tremendous impact on the
global Android ecosystem.

Closing remarks. We introduced the concepts of file
system footprint and signature and showed how these
“traces” lead to figuring out when a particular app is starting.
Then, thanks to inotify, we can execute code promptly
to mount a phishing attack – this work also opens up
interesting future works because these concepts can be
ported to different operating systems. Our measurements

show that all Android apps are vulnerable if the attacker
can monitor a file in the installation path. Otherwise,
we have shown that it is still possible to carry it out
on a smaller but significant number of apps. What is
more, the attacker can unleash it from a malicious app
without requesting any permission. Fortunately, we have
also shown the existence of practical remediation. However,
even assuming they are all implemented immediately, the
number of devices left vulnerable will remain high for
many years because of the timeframe to deploy these
updates, and many device vendors will not apply them.

In conclusion, despite the implications of our attack,
it has so far remained unknown to malware authors. We
hope they got scooped and that our contribution came in
time to prevent many personal data thefts.

Responsible Disclosure. We have reported three vulnera-
bilities to Google through the official issue tracker.
I) The possibility of using inotify in the installation folder
(reported in May 2022, acknowledged the same month);
II) The information disclosure, described in Section 7.3
(reported in July and acknowledged in September 2022);
III) The package visibility bypass via the queries tag,
described in Section 7.1 (reported in July 2022). The first
two were acknowledged as bugs of Moderate severity [28],
while the third was previously reported by other researchers
but was not public.

Acknowledgements. We are grateful to Slasti Mormanti
for his unceasing support of our team.

This work has benefited from a government grant
managed by the National Research Agency under France
2030 with the reference “ANR-22-PECY-0007.” This
work was also partially supported by project SERICS
(PE00000014) under the NRRP MUR program funded by
the EU - NGEU.

References

[1] N. N. S. Agency, “Ghidra: A software reverse engineering (sre),”
https://ghidra-sre.org/, 2022, accessed April 11, 2023.

[2] A. Aggarwal and P. Jalote, “Integrating static and dynamic analysis
for detecting vulnerabilities,” in 30th Annual International Computer
Software and Applications Conference (COMPSAC’06), vol. 1.
IEEE, 2006, pp. 343–350.

[3] W. H. Ahn, S. Park, J. Oh, and S.-H. Lim, “Inishing: a ui phishing
attack to exploit the vulnerability of inotify in android smartphones,”
IEICE TRANSACTIONS on Information and Systems, vol. 99, no. 9,
pp. 2404–2409, 2016.

[4] K. Allix, T. F. Bissyandé, J. Klein, and Y. Le Traon, “Androzoo:
Collecting millions of android apps for the research community,”
in 2016 IEEE/ACM 13th Working Conference on Mining Software
Repositories (MSR). IEEE, 2016, pp. 468–471.

[5] Amazon, “Amazon app store,” https://www.amazon.com/gp/mas/ge
t/amazonapp, 2022, accessed April 11, 2023.

[6] S. Aonzo, A. Merlo, G. Tavella, and Y. Fratantonio, “Phishing
attacks on modern android,” in Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security,
2018, pp. 1788–1801.

[7] AppBrain, “App brain,” https://www.appbrain.com/, 2022, accessed
April 11, 2023.

[8] AppMetrica, “Appmetrica yadex,” https://appmetrica.yandex, 2022,
accessed April 11, 2023.

[9] A. Bianchi, J. Corbetta, L. Invernizzi, Y. Fratantonio, C. Kruegel,
and G. Vigna, “What the app is that? deception and countermeasures
in the android user interface,” in 2015 IEEE Symposium on Security
and Privacy. IEEE, 2015, pp. 931–948.

[10] D. Caputo, L. Verderame, S. Aonzo, and A. Merlo, “Droids in
disarray: detecting frame confusion in hybrid android apps,” in
IFIP Annual Conference on Data and Applications Security and
Privacy. Springer, 2019, pp. 121–139.

[11] Q. A. Chen, Z. Qian, and Z. M. Mao, “Peeking into your app
without actually seeing it:{UI} state inference and novel android
attacks,” in 23rd USENIX Security Symposium (USENIX Security
14), 2014, pp. 1037–1052.

[12] T. M. Corporation, “Software discovery,” https://attack.mitre.org/t
echniques/T1418/, 2022, accessed April 11, 2023.

[13] A. P. Felt and D. Wagner, “Phishing on mobile devices,” 2011.

[14] E. Fernandes, Q. A. Chen, J. Paupore, G. Essl, J. A. Halderman,
Z. M. Mao, and A. Prakash, “Android ui deception revisited:
Attacks and defenses,” in International Conference on Financial
Cryptography and Data Security. Springer, 2016, pp. 41–59.

[15] F. File, “Firmware file,” firmwarefile.com, accessed April 11, 2023.

[16] Y. Fratantonio, C. Qian, S. P. Chung, and W. Lee, “Cloak and dagger:
from two permissions to complete control of the ui feedback loop,”
in 2017 IEEE Symposium on Security and Privacy (SP). IEEE,
2017, pp. 1041–1057.

[17] Google, “Android 12.1 – selinux hooks,” https://android.googlesour
ce.com/kernel/common/+/refs/tags/android-12.1.0 r0.35/security/
selinux/hooks.c, 2021, accessed April 11, 2023.

[18] ——, “Android 8.0 – security changes,” https://developer.android.
com/about/versions/oreo/android-8.0-changes#security-all, 2021,
accessed April 11, 2023.

[19] ——, “Android app categories,” https://support.google.com/googl
eplay/android-developer/answer/9859673, 2022, accessed April 11,
2023.

[20] ——, “Android mainline – selinux macro,” https://android.google
source.com/platform/system/sepolicy/+/refs/heads/master/public/t
e macros, 2022, accessed April 11, 2023.

[21] ——, “Android package visibility,” https://developer.android.com/tr
aining/package-visibility, 2022, accessed April 11, 2023.

[22] ——, “Android permissions,” https://developer.android.com/guide/
topics/permissions/overview, 2022, accessed April 11, 2023.

[23] ——, “Android scoped storage,” https://developer.android.com/trai
ning/data-storage#scoped-storage, 2022, accessed April 11, 2023.

https://ghidra-sre.org/
https://www.amazon.com/gp/mas/get/amazonapp
https://www.amazon.com/gp/mas/get/amazonapp
https://www.appbrain.com/
https://appmetrica.yandex
https://attack.mitre.org/techniques/T1418/
https://attack.mitre.org/techniques/T1418/
firmwarefile.com
https://android.googlesource.com/kernel/common/+/refs/tags/android-12.1.0_r0.35/security/selinux/hooks.c
https://android.googlesource.com/kernel/common/+/refs/tags/android-12.1.0_r0.35/security/selinux/hooks.c
https://android.googlesource.com/kernel/common/+/refs/tags/android-12.1.0_r0.35/security/selinux/hooks.c
https://developer.android.com/about/versions/oreo/android-8.0-changes#security-all
https://developer.android.com/about/versions/oreo/android-8.0-changes#security-all
https://support.google.com/googleplay/android-developer/answer/9859673
https://support.google.com/googleplay/android-developer/answer/9859673
https://android.googlesource.com/platform/system/sepolicy/+/refs/heads/master/public/te_macros
https://android.googlesource.com/platform/system/sepolicy/+/refs/heads/master/public/te_macros
https://android.googlesource.com/platform/system/sepolicy/+/refs/heads/master/public/te_macros
https://developer.android.com/training/package-visibility
https://developer.android.com/training/package-visibility
https://developer.android.com/guide/topics/permissions/overview
https://developer.android.com/guide/topics/permissions/overview
https://developer.android.com/training/data-storage#scoped-storage
https://developer.android.com/training/data-storage#scoped-storage

[24] ——, “Average number of apps installed on users’ smartphones,”
https://www.thinkwithgoogle.com/marketing-strategies/app-and-m
obile/average-number-of-apps-on-smartphones/, 2022, accessed
April 11, 2023.

[25] ——, “Create a custom notification layout,” https://developer.andr
oid.com/training/notify-user/custom-notification, 2022, accessed
April 11, 2023.

[26] ——, “Declaring package visibility needs,” https://developer.androi
d.com/training/package-visibility/declaring, 2022, accessed April
11, 2023.

[27] ——, “Fileobserver,” https://developer.android.com/reference/andr
oid/os/FileObserver, 2022, accessed April 11, 2023.

[28] ——, “Security updates and resources – severity,” https://source
.android.com/security/overview/updates-resources#severity, 2022,
accessed April 11, 2023.

[29] T. kernel development community, “Bpf documentation — the linux
kernel documentation,” https://www.kernel.org/doc/html/latest/bpf/i
ndex.html, 2022, accessed April 11, 2023.

[30] S. Kevin, “Bankbot found on google play and targets ten new uae
banking apps.” https://www.trendmicro.com/en us/research/17/i/ba
nkbot-found-google-play-targets-ten-new-uae-banking-apps.html,
accessed April 11, 2023.

[31] R. Love, “inotify documentation,” https://www.kernel.org/doc/Doc
umentation/filesystems/inotify.txt, 2015, accessed April 11, 2023.

[32] C. P. S. T. Ltd., “Man-in-the-disk: A new attack surface for android
apps,” https://blog.checkpoint.com/2018/08/12/man-in-the-disk-a
-new-attack-surface-for-android-apps/, 2018, accessed April 11,
2023.

[33] L. Malisa, K. Kostiainen, and S. Capkun, “Detecting mobile
application spoofing attacks by leveraging user visual similarity
perception,” in Proceedings of the Seventh ACM on Conference on
Data and Application Security and Privacy, 2017, pp. 289–300.

[34] Malwarebytes, “Trojan.dropper,” https://blog.malwarebytes.com/de
tections/trojan-dropper/, 2022, accessed April 11, 2023.

[35] F. Naves, A. Conway, S. W. Jones, and A. Mcneil, “Tanglebot:
New advanced sms malware targets mobile users across u.s. and
canada with covid-19 lures,” https://www.cloudmark.com/en/blog/
malware/tanglebot-new-advanced-sms-malware-targets-mobile-u
sers-across-us-and-canada-covid-19, accessed April 11, 2023.

[36] A. Petukhov and D. Kozlov, “Detecting security vulnerabilities in
web applications using dynamic analysis with penetration testing,”
Computing Systems Lab, Department of Computer Science, Moscow
State University, pp. 1–120, 2008.

[37] A. Possemato, S. Aonzo, D. Balzarotti, and Y. Fratantonio, “Trust,
But Verify: A Longitudinal Analysis Of Android OEM Compliance
and Customization,” in Proceedings of the IEEE Symposium on
Security and Privacy (S&P), San Francisco, CA, May 2021.

[38] A. Possemato, D. Nisi, and Y. Fratantonio, “Preventing and detecting
state inference attacks on android,” in Proceedings of the 2021
Network and Distributed System Security Symposium (NDSS),
Virtual, 21st-25th February, 2021.

[39] C. Ren, P. Liu, and S. Zhu, “Windowguard: Systematic protection
of gui security in android.” in NDSS, 2017.

[40] C. Ren, Y. Zhang, H. Xue, T. Wei, and P. Liu, “Towards discovering
and understanding task hijacking in android,” in 24th USENIX
Security Symposium (USENIX Security 15), 2015, pp. 945–959.

[41] A. Romdhana, A. Merlo, M. Ceccato, and P. Tonella, “Deep
reinforcement learning for black-box testing of android apps,” ACM
Transactions on Software Engineering and Methodology, 2022.

[42] A. Ruggia, “inotify-analyzer,” https://gitlab.eurecom.fr/totoR13/inot
ify-analyzer, 2023, accessed April 11, 2023.

[43] Samsung, “Samsung galaxy app,” https://www.samsung.com/levant
/apps/galaxy-store/, 2022, accessed April 11, 2023.

[44] S. Sebastián and J. Caballero, “Avclass2: Massive malware tag ex-
traction from av labels,” in Annual Computer Security Applications
Conference, 2020, pp. 42–53.

[45] A. Security, “libbpfgo,” https://github.com/aquasecurity/libbpfgo,
2022, accessed April 11, 2023.

[46] R. Spreitzer, F. Kirchengast, D. Gruss, and S. Mangard, “Prochar-
vester: Fully automated analysis of procfs side-channel leaks on
android,” in Proceedings of the 2018 on Asia Conference on
Computer and Communications Security, 2018, pp. 749–763.

[47] R. Spreitzer, G. Palfinger, and S. Mangard, “Scandroid: Automated
side-channel analysis of android apis,” in Proceedings of the 11th
ACM Conference on Security & Privacy in Wireless and Mobile
Networks, 2018, pp. 224–235.

[48] G. Stergiopoulos, D. Gritzalis, E. Vasilellis, and A. Anagnos-
topoulou, “Dropping malware through sound injection: A com-
parative analysis on android operating systems,” Computers &
Security, vol. 105, p. 102228, 2021.

[49] stockrom.net, “stockrom,” stockrom.net, accessed April 11, 2023.

[50] Tencent, “Myapp – tencent,” https://android.myapp.com/, 2022,
accessed April 11, 2023.

[51] ThreatFabric, “300.000+ infections via droppers on google play
store,” https://threatfabric.com/blogs/deceive-the-heavens-to-cross-t
he-sea.html, 2021, accessed April 11, 2023.

[52] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and
V. Sundaresan, “Soot: A java bytecode optimization framework,”
in CASCON First Decade High Impact Papers, 2010, pp. 214–224.

[53] Vungle, “Vungle,” https://support.vungle.com/hc/en-us/, 2022,
accessed April 11, 2023.

[54] D. Web, “The coper — a new android banking trojan targeting
colombian users,” https://news.drweb.com/show/?i=14259&lng=e
n&c=5, accessed April 11, 2023.

[55] L. Wu, X. Du, and J. Wu, “Mobifish: A lightweight anti-phishing
scheme for mobile phones,” in 2014 23rd International Conference
on Computer Communication and Networks (ICCCN). IEEE, 2014,
pp. 1–8.

[56] Z. Xu and S. Zhu, “Abusing notification services on smartphones
for phishing and spamming.” in WOOT, 2012, pp. 1–11.

[57] C. Youmeng, “Umeng,” https://www.umeng.com/, 2022, accessed
April 11, 2023.

[58] N. Zhang, K. Yuan, M. Naveed, X. Zhou, and X. Wang, “Leave me
alone: App-level protection against runtime information gathering
on android,” in 2015 IEEE Symposium on Security and Privacy.
IEEE, 2015, pp. 915–930.

A. Distribution of malware families

Table 2 reports the five most frequent families and the
Singletons for the whole malware dataset (row 2), malware
that interacts with inotify in Java (row 3), and native layers
(row 4).

B. Inotify Events to System Calls

As described in Section 5.2, inoTool creates the FSFoot-
print from the list of system calls that eBPF intercepted.
While, in most cases, mapping a syscall to an inotify event
is straightforward (such mapping is reported in Table 3),
three event types represent interesting exceptions: file
closing, moving, and deleting. The first event type occurs
when a process closes a file descriptor and distinguishes
two different cases. If the process had opened the file
descriptor in writing mode, then an (IN_CLOSE_WRITE)
event would arise; on the contrary, inotify returns an
(IN_CLOSE_NOWRITE) event if the process did not open
the file descriptor for writing. To correctly handle these two
events, inoTool keeps track of the opening options for each
file descriptor. The move event class distinguishes three
different events. The first one – IN_MOVE_SELF – hap-
pens when the moved file is the program that spawned the
process that moves the file. The other two – IN_MOVE_TO

https://www.thinkwithgoogle.com/marketing-strategies/app-and-mobile/average-number-of-apps-on-smartphones/
https://www.thinkwithgoogle.com/marketing-strategies/app-and-mobile/average-number-of-apps-on-smartphones/
https://developer.android.com/training/notify-user/custom-notification
https://developer.android.com/training/notify-user/custom-notification
https://developer.android.com/training/package-visibility/declaring
https://developer.android.com/training/package-visibility/declaring
https://developer.android.com/reference/android/os/FileObserver
https://developer.android.com/reference/android/os/FileObserver
https://source.android.com/security/overview/updates-resources#severity
https://source.android.com/security/overview/updates-resources#severity
https://www.kernel.org/doc/html/latest/bpf/index.html
https://www.kernel.org/doc/html/latest/bpf/index.html
https://www.trendmicro.com/en_us/research/17/i/bankbot-found-google-play-targets-ten-new-uae-banking-apps.html
https://www.trendmicro.com/en_us/research/17/i/bankbot-found-google-play-targets-ten-new-uae-banking-apps.html
https://www.kernel.org/doc/Documentation/filesystems/inotify.txt
https://www.kernel.org/doc/Documentation/filesystems/inotify.txt
https://blog.checkpoint.com/2018/08/12/man-in-the-disk-a-new-attack-surface-for-android-apps/
https://blog.checkpoint.com/2018/08/12/man-in-the-disk-a-new-attack-surface-for-android-apps/
https://blog.malwarebytes.com/detections/trojan-dropper/
https://blog.malwarebytes.com/detections/trojan-dropper/
https://www.cloudmark.com/en/blog/malware/tanglebot-new-advanced-sms-malware-targets-mobile-users-across-us-and-canada-covid-19
https://www.cloudmark.com/en/blog/malware/tanglebot-new-advanced-sms-malware-targets-mobile-users-across-us-and-canada-covid-19
https://www.cloudmark.com/en/blog/malware/tanglebot-new-advanced-sms-malware-targets-mobile-users-across-us-and-canada-covid-19
https://gitlab.eurecom.fr/totoR13/inotify-analyzer
https://gitlab.eurecom.fr/totoR13/inotify-analyzer
https://www.samsung.com/levant/apps/galaxy-store/
https://www.samsung.com/levant/apps/galaxy-store/
https://github.com/aquasecurity/libbpfgo
stockrom.net
https://android.myapp.com/
https://threatfabric.com/blogs/deceive-the-heavens-to-cross-the-sea.html
https://threatfabric.com/blogs/deceive-the-heavens-to-cross-the-sea.html
https://support.vungle.com/hc/en-us/
https://news.drweb.com/show/?i=14259&lng=en&c=5
https://news.drweb.com/show/?i=14259&lng=en&c=5
https://www.umeng.com/

Table 2: Distribution of the malware families

Dataset # of Samples # of Families Fam1 (%) Fam2 (%) Fam3 (%) Fam4 (%) Fam5 (%) Singleton (%)
10,000 140 5.0 0.8 0.8 0.7 0.5 84.0

Java layer 744 65 4.8 3.9 2.4 2.1 2.0 57.8
Native layer 769 30 0.23 0.19 0.12 0.09 0.08 98.7

Table 3: Inotify event to system call

Inotify event System call
read
execveIN ACCESS
execveat
chmod
fchmod
fchmodat
utimensat
setxattr
lsetxattr
fsetxattr
chown
fchown
lchown
fchownat
utime
utimes

IN ATTRIB

futimesat
IN CLOSE (WRITE|NOWRITE) close

mkdir
mkdirat
link
linkat
symlink
symlinkat
bind
mknod

IN CREATE

mknodat
rmdirIN DELETE(SELF) unlink
write
truncateIN MODIFY
ftruncate
openIN OPEN openat
rename
renameatIN MOVE (SELF|FROM|TO)
renameat2

and IN_MOVE_FROM – arise when the file is moved to
or from the monitored directory, respectively. Similarly,
the delete event class depends on whether the watched
file/directory was itself deleted (IN_DELETE_SELF) or
the file/directory deleted from the watched directory (IN_-
DELETE).

C. App-dependent events path

Table 4 presents the distribution of app-dependent
events of our dataset throughout an Android file system.
Specifically, each row in the table represents a path in the
Android file system, defined in terms of top- and second-
level (first and second column, respectively) directories.
The third column provides the share of apps in the dataset
whose FSSignature∗K contain at least one event in the
corresponding directory.

Table 4: Path distribution of files in FSSignature∗K

Root Depth=1 Percentage %
/data 17.20

/app 17.20
/storage 1.5

<sdcard_ID> 0.68
/emulated 0.84

/sys 0.06
/devices 0.06

/system 0.03
/priv-app 0.03
/lib64 0.02

/etc 0.02
/passwd 0.02

/product 0.02
/overlay 0.02

Table 5: Android APIs usage to interact with the external
memory. We omitted android at the beginning of each
API for readability.

Path %

.content.Context.getFilesDir 98.73

.os.Environment.getExternalStorageDirectory 97.15

.content.Context.getExternalFilesDir 91.35

.content.Context.getExternalFilesDirs 90.34

.content.Context.getExternalCacheDirs 90.06

.content.Context.getExternalCacheDir 88.10

.content.Context.getExternalMediaDirs 87.07

.content.Context.getObbDirs 74.73

.content.Context.getObbDir 61.96

D. Android APIs & private folder

During our analysis, we investigated which Android
APIs are used to to retrieve the path(s) of the private
folder in the external memory. In Table 5, we show the
prevalence in our dataset of benign apps (Section 7). While
in Table 6, we report all the “tainted” APIs we found in
malware (Section 4), that is, the ones involved in generating
the path passed as input to the FileObserver class.

E. SD cards

In Android, handling external memories (especially SD
cards) has changed a lot between versions. In the past,
/sdcard/ folder was used to this purpose, while today it
is a symbolic link to the /storage/self/primary/
folder, which in turn is always (counterintuitively) a
symbolic link to /storage/emulated/0/. However,
regardless of the presence or absence of a physical external
mass memory device (i.e., SD card), the Android system
always “emulates” an external device under the folder
/storage/emulated/, where it mounts a partition of
its internal memory.

Nowadays, when a user inserts an SD card, the system
offers her two configurations. The first, named portable,
manages the memory space on the SD card so the user
can remove and use it on other devices. When a new

Table 6: Tainted Android APIs that affects FileOb-
server constructor in malware

Path %

android.content.Context.getFilesDir 11.32
android.content.Context.getNoBackupFilesDir 7.84
android.content.Context.getExternalFilesDir 4.35
android.content.Context.getDir 1.74
android.os.Environment.getExternalStorageDirectory 0.44

Table 7: ROM versions & models

Brand Model Vulnerable

Samsung
Galaxy S20 Ulta ✓

Galaxy S10e ✓
Galaxy A23 ✓

Xiaomi
Xiaomi 12S Pro ✓
Redmi Note 8 ✓

Redmi 10 ✓

Motorola
Edge 20 Pro ✓
Moto G52 ✓
Moto G30 ✓

Realme C25 RMX3191 ✓
Lenovo Legion Y90 ✓

SD card is plugged in, the system creates the mount
point /storage/<sdcard_ID>/. Instead, the internal
configuration is designed to extend the device’s internal
memory. What happens under the hood is that the system
mounts the SD card in the emulated external storage, i.e.,
under /storage/emulated/. In this scenario, the SD
card cannot be transferred between different devices.

During our analysis, we discovered that apps’ private
folders in the portable configuration of an SD card could
be monitored by means of the inotify API (contrary to
what an attacker is able to do in the internal memory).

F. Third-party vendors

We collected other vendors’ latest ROMs from
stockrom.net [49] or firmwarefile.com [15]
for the most popular vendors – i.e., Samsung, Xiaomi,
Motorola, Lenovo, and Realme (see Table 7). To
gather reliable results, we collected only the ROMs
with the latest security upgrades (e.g., scoped storage),
preferring Android 12 when available. Then, we
extracted the content of each rom, looking for the
SElinux policy files. It is worth noticing that the
/sys/fs/selinux/policy file is available only
at runtime; thus, we searched for the following source
file (it could depend from the ROM customization):
sepolicy, file_contexts, property_contexts,
seapp_contexts, service_contexts, plat_-
file_contexts, nonplat_file_contexts, plat_-
property_contexts, nonplat_property_contexts,
plat_service_contexts, nonplat_service_-
contexts, plat_hwservice_contexts, nonplat_-
hwservice_contexts, vndservice_contexts,
plat_seapp_contexts, nonplat_seapp_contexts.

The analysis allowed us to identify that all the tested
ROMs inherit the AOSP SELinux policy, which assigns to
an untrusted app the watch and watch_read permis-
sions (refer to Section 8).

	Introduction
	Background
	Android Internals
	Inotify in Linux and Android

	Related Work
	The use of inotify among malware
	Analysis Tool
	Function #1 – logEvents
	Function #2 – generateSignatures
	Function #3 – signatureVerifier

	Experimental Evaluation
	Experimental Setup and Dataset
	Preliminary Analysis

	Attacker Models & Attack Scenarios
	Attack #1
	Attack #2
	Attack #3
	Final Considerations
	Use Case with Contextual Notification

	Mitigations
	Limitations & Conclusions
	References
	Appendix A: Distribution of malware families
	Appendix B: Inotify Events to System Calls
	Appendix C: App-dependent events path
	Appendix D: Android APIs & private folder
	Appendix E: SD cards
	Appendix F: Third-party vendors

