Beyond Precision and Recall: Understanding
Uses (and Misuses) of Similarity Hashes in
Binary Analysis

Fabio Pagani !, Matteo Dell’Amico 2, Davide Balzarotti *

'EURECOM

2Symantec Research Labs

ACM Conference on Data and Application Security and Privacy 2018

Introduction

The need to compare files is stronger than ever before

Submissions

1,200,000

900,000 \/_//’—
600,000
300,000
0

Mar 2, 2018 Mar 4,2018 Mar 6, 2018 Mar 8, 2018
—— Total files —— Distinct files Distinct files detected by one engine ormore —— Distinct new files

(Source: VirusTotal)

Introduction

The need to compare files is stronger than ever before

File types

1,000,000

100,000

1000 I I IIIIIIlllllll--
Ead
@

& & o oo _..Q & R
,(j~ S @”Q@ \a—b@ Q» a§ & V}a‘}\' & Q)‘Q’cp K O @‘Q\X @ ﬂk@ DQQQ‘,* f q@
@“ e & ¢

%

O q\\\‘bq\\ S ,@fa

(Source: VirusTotal)

Fuzzy Hash - Intro

10000111011100
11111001010000
01001111000011
10001001111010

% ab39a73212d9

Compare

10000111011100
11111001010000
01001111000011
10001001111101

Similarity 90%

» ab39a73212d5

Fuzzy Hash - Intro

e File Agnostic (no static analysis)
o Fast

e Hash comparison

Fuzzy Hash - Intro

@ File Identification

MD5 3948462211d00c9cecd68fd 194e76C5f

SHA1 132202769725a08bdic104e17e3521dd1d03ec

SHA256 db16badb3029244b4d300648e443a3f0cT 1befB35067c44476d113817a1c6209d

ssdeep 96:cexhkyqVGRIbk+xuM3cTd3pTdTKHOIrQ4ypCWVK/IU094MZ cecyqeRIbkKdsRXEQIrQ4gCP
File size 3.5KB (3582 bytes)

File type PDF

Magic literal PDF document, version 1.4

TriD Adobe Portable Document Format (100.0%)

Tags ove-2007-5659 | exploit [t

Fuzzy Hash - Tools

e ssdeep (2006) and mrsh-v2 (2012)

e Context Triggered Piecewise Hashing
e Match if large part are in common (chapter in a text file)

e sdhash (2010)

e Statistically Improbable Features - 64-byte strings
e Match if such strings are in common (phrases in a text file)

o tlsh (2013)

e N-Grams frequencies
e Match if frequency is common (similar words, same language)

TABLE V. PUBLISHED MEASUREMENTS VS TESTED MEASUREMENTS

MALWARE [Published Tested (Peak FMeasure)

Recall | Precision | Recall | Precision

TLSH[6]
sdhash[6]

ssdeep[6]

NTS

£os
~ sy

&
M A i 0e
\Sdhash
Ssdeep

compared to the same binaries variant average distance. Also,
it is observed that the average distance for the same variant is
high and close to 1, which indicates that SSDEEP barely o
matches binaries for the same version. .

AR} A\O(\
Ve WA\
) g‘e(f& /

average distance. Also, it is observed that the average distance _
for the same variant is high and close to 1, which indicates that
“\SDHASH barely matches binaries for the same version.

09

?(ec\b‘v

average distance. Also/,
fice for the same variant is
fcates that SSDEEP barely o

> a(

\ SO et c\%‘O
)) (Siec" /
average distance. Also, it is ed that the average distance _

for the same variant is high and close to 1, which indicates that
“\SDHASH barely matches binaries for the same version.

compared to the same binaries
it is observed that the average
high and close to 1, whic
matches binaries for the same

pred™ ¢

Binary Analysis Scenarios

e Scenario 1: library identification in statically linked binaries
e Scenario 2: applications compiled with different toolchains

e Scenario 3: different versions of the same application

Scenario 1: Library ldentification

e 5 Linux libraries statically compiled in a C program
e Two test: entire object file, .text section only

Scenario 1: Library ldentification

e 5 Linux libraries statically compiled in a C program
e Two test: entire object file, .text section only

Algorithm Entire object .text segment
TP% FP% Ern% TP% FP% Err%
ssdeep 0 0 - 0 0 =
mrsh-v2 11.7 0.5 - 7.7 0.2 -
sdhash 12.8 0 - 244 0.1 539
tlsh 0.4 0.1 - 0.2 0.1 41.7

Scenario 1: Library ldentification

e 5 Linux libraries statically compiled in a C program
e Two test: entire object file, .text section only

Algorithm Entire object .text segment
TP% FP% Ern% TP% FP% Err%
ssdeep 0 0 - 0 0 =
mrsh-v2 11.7 0.5 - 7.7 0.2 -
sdhash 12.8 0 - 244 0.1 539
tlsh 0.4 0.1 - 0.2 0.1 41.7

Potential Problems

e Library Fragmentation (1MB binary vs 13KB object)

o Relocations

Scenario 1: Library Identification - Takeaways

e Matching statically linked libraries is a difficult task

e Major Problems:
e Size binary >> size object file (impacts CTPH and t1lsh)

e Relocations (~ 10% of bytes changed) (impacts sdhash)

Scenario 2: Re-compilation

e [wo dataset:

e Small: 1s, sort, tail, base64, cp
e Large: wireshark, ssh, sqlite3, openssl, httpd

e 5 compiler flags (00..0s)

e 4 compiler (gcc-5, gcc-6, clang, icc)

Scenario 2: Re-compilation - Flags Results

Q0 01 02 03 Os
00 0 % 0 % 0% 0%
0.8
o1 0_4_'| 0% || 0% || 0%
0.0
0.8
02 44 _'I |I 30% || 25%
0.0 -
0.8 3
o3 0_4_'| |l I 15 %
0.0 - [
0.8
Os M.‘I |I I I
0.0 e e

0O 408 0 40 8 0 40 80 O 40 80

ssdeep (0% FP)

Scenario 2: Re-compilation - Flags Results

Q0 01 02 03 Os

00 50 % 5% 10 % 35 %
0.8

o1 0_4_'| 0% || 5% ||80%
0.0
0.8

02 o4 100%|| 5%
0.0 -
0.8 3
03 4]

5%
0.0 I' i

ﬂ
I
o .

0O 408 0 40 8 0 40 80 O 40 80

sdhash (0% FP) Small Dataset

Scenario 2: Re-compilation - Flags Results

00 Ol 02 03 Os

00 100 % | [100 % | | 100 % | | 100 %

01l 100 % | | 100 % | | 100 %

0.8
0.4
0.0
0.8
0.4 1'- |._. 100 % | | 100 %
0.0
0.8
03 0.4 1‘» I‘ 100 %
0.0 ‘.
0.8
0.4
0.0 lT"""r"'

0O 408 0 40 8 0 40 80 O 40 80

sdhash (0% FP) Large Dataset

02

Os

Scenario 2: Re-compilation - Flags Results

00

0Ol

02

03

Os

Q0 01 02 03 Os
0 % 0 % 0% 0 %
0.8 -
04 _'I 0% || 0% || 0%
0.0
0.8 -
0.4 _'I _JL 65 % 0%
0.0 -
osjl 0 %
0.4 o
%4] il
0.8—_
0.4
0.0 e e e e
0D 408 0 408 0 408 0 40 80

tlsh (0% FP)

Scenario 2: Re-compilation - Flags Results

00

0Ol

02

03

Os

00

Ol

02

03

Os

0%

0%

0%

0%

0.8
0.4 1

0.0

10 %

10 %

0%

0.8
0.4

0.0

70 %

0.4

il

|

0.0

5%

5%

0.8
0.4

0.8 —I

0.0 e

0 40 80

tlsh (1% FP)

RARRRZRNRE:
0 40 80

0 40 80

Scenario 2: Re-compilation - Flags Results

00

0Ol

02

03

Os

Q0 01 02 03 Os
0% 0% 0% 0%
0.8
0_4_'| 75 % 60 % 0 %
0.0
0.8
0_4_'| 1 95% || 45 %
0.0 -
0'8_-| 35 %
0.4 3 °
%4] i} ah
0.8—_
0.4
0.0 e e e e
0 408 0 408 0 4080 0 40 80

tlsh (5% FP)

Scenario 2: Re-compilation - Flags Results

00

0Ol

02

03

Os

Q0 01 02 03 Os
0 % 0 % 0% 0 %
0.8
0.4 _'I 95 % 85 % 40 %
0.0
0.8
0.4 _'I I 100 % 70 %
0.0 -
o _'I 60 %
0.4 o
0.0 - Jl -‘L
0.8—_
0.4
0.0 e e e e
0 408 0 4080 0 40 80 0O 40 80

t1lsh (10% FP)

Scenario 2: Re-compilation - Takeaways

e sdhash shines in this scenario
e tlsh is suitable as well, but has higher FP rate

e Programs compiled with 00 are the hardest to
match

10

Scenario 3: Program Similarity

Keeping the toolchain constant we tested:

e Small differences at assembly level (benign)
e Small differences at source level (benign)

e Different version of the same application
(malware)

11

Scenario 3: Program Similarity - Assembly Level

e Program under test: ssh-client

e Applied transformations:

e random insertion of NOPs
e random swapping of two instruction

12

Scenario 3: Program Similarity - Assembly Level

100 e -
'\._:;'- : T
) B . T
80 -\' ,.“:
60 \‘; ‘f
s Lo
2 [CN I
@ 404 —— tlsh 11;‘
sdhash I .
1\
20 4 =*=*** mrsh-v2 : ’\ B I
—+=— ssdeep : '_ "‘*.,‘]
0 — T . 1 1
0 100 10! 102 107 108

Number of nops inserted (out of 150k instructions)

13

Scenario 3: Program Similarity - Assembly Level

We found cases where only 2 nops were enough to
zero the similarity

What happened

1. some function are shifted down — intra-code references needs
to be adjusted

2. .text section size increases — following sections are shifted
down

3. references to this sections need to be adjusted (.rodata)

4. In total 8 sections changed

13

Scenario 3: Program Similarity - Source Level

e Program under test: ssh-client

e Applied modifications:

e Different comparison operator (< —<)
e New condition
e Change of a constant

Results are hard to predict because the compiler has
aggressive optimization

14

Scenario 3: Program Similarity - Source Level

Change ssdeep mrsh-v2 tlsh sdhash
Operator 0 - 100 -100 99 -100 - 100
Condition 0 - 100 -99 96 -99 - 100

Constant 0-97 -99 97 - 99 -100

14

Scenario 3: Program Similarity - Different version

e Malware under test:

e Grum (Windows)
e Mirai (Linux)

e Applied modifications:
e New C&C domain (real and long)
e FEvasion: real anti-analysis tricks to detect debugger
and virtualization
e New functionality: collect and send the list of user
present in the system

ii5)

Scenario 3: Program Similarity - Different version

ssdeep mrsh-v2 tlsh sdhash
Change

M G M G M G M G
C&C domain (real) 0 0 97 99 88 98
C&C domain (long) 0 0 44 94 84 72
Evasion 0 0 0 93 87
Functionality 0 0 0 88 84

“M" and "G" stand respectively for “Mirai” and “Grum”

ii5)

Scenario 3: Program Similarity - Takeaways

e t1sh shines in this scenario

e If binary sections are moved expect a low

similarity

16

Conclusion

Today we sheds light on the behavior of fuzzy hashing.

e CTPH — falls short in most tasks (used by VirusTotal)
e sdhash — same program compiled in different ways

e tlsh — different version of the same program

17

