
RAMBO: Run-time packer Analysis with Multiple Branch Observation

Xabier Ugarte-Pedrero, Davide Balzarotti, Igor Santos, Pablo G. Bringas
University of Deusto, Cisco Talos, Eurecom

13th Conference on Detection of Intrusions and Malware & Vulnerability Assessment

Outline

•  Why multi-path exploration for packers?
•  Approach
–  Domain-specific optimizations
–  Heuristics

•  Evaluation
•  Discuss the results

Run-time packers.. .
•  Widely used by malware authors to obfuscate/

protect their code
•  2 main goals
–  Hide the original code from static analysis
–  Implement anti-analysis methods
•  Anti-debug
•  Anti-dump
•  VM / Sandbox / Tool detection

•  Making both automated and manual analysis more
difficult

Shifting-decode-frames
•  Also known as “partial code revelation”
•  Takes advantage of the limitation of dynamic

analysis
–  Single path!

•  Decrypt code/data on-demand
•  Prevent “run and dump”
•  Used by certain “advanced” protectors (i.e.

Armadillo)
•  Presented in academic literature (Bilge et. al.)
–  Compile time function based protection

Multi-path exploration.. .
•  Computationally complex
–  Specially with obfuscated (even self-

modifying) code
•  Does not scale to real-world, large, complex

malware

Multi-path exploration.. .
•  Computationally complex
–  Specially with obfuscated (even self-

modifying) code
•  Does not scale to real-world, large, complex

malware

Can we apply optimizations to multi-path
exploration

for this specific use case?

Multi-path exploration
•  Computationally complex
–  Specially with obfuscated (even self-

modifying) code
•  Does not scale to real-world, large, complex

malware

Can we apply heuristics to multi-path
exploration

for unpacking this type of packers?

Some intuitions.. .

•  We do NOT need to explore every single path in the
binary, just enough paths to uncover all the interesting
regions.

•  We do NOT need to understand which are the conditions
to reach each path (unlike other use-cases, such as
vulnerability analysis.

•  We do NOT need to maintain the environment / system
perfectly consistent. We just need to make sure that the
execution is stable enough to uncover the protected
regions.

Multi-path exploration
•  Baseline implementation
–  Based on the concepts presented by Moser et al.

•  Bitblaze platform
–  Dynamic taint analysis (Temu)
•  Taint result of function calls:
–  Network/file/argument/time related

–  Symbolic analysis (Vine)
•  Based on Weakest precondition & queries to STP
•  Concrete address for indirect memory accesses

–  System-level snapshots
•  Heavier, but we avoid dealing with system level

inconsistencies: handles, open files, sockets...

Optimizations
#1 Partial symbolic execution

Only execute certain regions of interest
#2 Inconsistent multi-path exploration

Ignore path constraints if solver cannot provide a
solution

Give priority to paths that can be solved consistently

#3 Sacrifice global consistency
Maintain consistency only for the regions of interest

Optimizations
#4 Discard long traces
#5 Bypass blocking API calls
#6 String comparisons

Our model avoids exploring string comparison API
calls

We taint the output whenever input arguments are
tainted

This relaxes the constraints, allowing certain
inconsistencies

The general goal is to simplify symbolic

processing

General workflow
Approach:
1.  Extract unpacked memory regions (frames)

–  Generically detect the frames & dump at
the appropriate point
•  Prev. work: Deep Packer Inspection

2.  Process extracted code (disassemble, compute
CFG)

3.  Find interesting points in the code (specific
instructions)

4.  Compute which paths lead to these points
5.  Prioritize these paths during multi-path

exploration

General workflow
 Approach:

1.  Extract unpacked memory regions (frames)
–  Generically detect the frames & dump at

the appropriate point
•  Prev. work: Deep Packer Inspection

2.  Process extracted code (disassemble, compute
CFG)

3.  Find interesting points in the code (specific
instructions)

4.  Compute which paths lead to these points
5.  Prioritize these paths during multi-path

exploration

Heuristic

Decide which paths should be expanded first
•  Several paths can trigger the execution of a region
•  We can skip paths that can only lead to regions

already unpacked

Heuristic
Steer the execution to the interesting points:
•  JMP & CALL instructions
–  that we have not executed in any run, but:
–  If they lead to a region that has not been unpacked

yet
•  CJMP instructions leading to protected regions
–  That have not been executed (but were unpacked)
–  If we have only explored one of their paths

•  Direct memory access (address not unpacked yet)
•  Indirect calls (explore all the paths to these points)
•  Immediate values that fall in the range of a protected

memory region (may represent a memory access)

Heuristic
Also need to consider inter-procedural CFG:
•  Explore all the paths that lead to a function, if it contains

“points of interest”.
Path selection during MPE:
•  Breadth First Search
–  Incrementally expand all the paths in the tree
–  Prioritize other paths over loops

•  Prioritize branches with the lowest number of
expansions

•  Prioritize paths that can be forced consistently over
inconsistent ones

Heuristic
Last resort: path bruteforcing
•  Set maximum number of expansions for each branch.
•  When this limit is reached for all the tainted branches:
–  Force the alternative path of non-tainted branches

(INCONSISTENT!)
•  Introduces inconsistencies, but can be useful to:
–  Bypass loops or control structures with very

complex internal logic depending on input
•  E.g.: Parsers

–  In some cases, we just need to jump to some point
in the code to trigger its unpacking.

Evaluation

Case study #1: Backpack + Kaiten IRC Bot
•  Compile-time packer proposed by Bilge et al.
•  Function based granularity
•  Kaiten: IRC bot that connects a channel and

receives commands

Iteration 0 Iteration 1 Iteration 2 No Heur.

Functions unpacked 5/31 11/31 27/31 8/31

Interesting points - 52 96 -

Cjmps - 36 110 -

Snapshots - 167 544 6015

Tainted-consistent cjmps - 161 525 5888

Tainted-inconsistent cjmps - 6 19 127

Untainted cjmps - 0 40 -

Long traces discarded - 6 0 -

Time 5m 24m 1.2h 8h

Evaluation

Case study #2: Armadillo
•  Page based granularity (based on memory

protection)
•  Protected 2 bots: SDBot, SpyBot.

SDBOT It. 0 It. 1 It. 2 It. 3 No Heur.

Functions unpacked 2/7 4/7 6/7 7/7 4/7

Interesting points - 3 2 7 -

Cjmps - 65 162 264 -

Snapshots - 14 366 367 3974

Tainted-consistent cjmps - 13 295 296 3660

Tainted-inconsistent cjmps - 1 71 71 314

Untainted cjmps - 0 1 1 -

Long traces discarded - 1 14 14 -

Time 30m 2.2h 2.8h 3.2h 8h

SPYBOT Iteration 0 Iteration 1 Iteration 2 No Heur.

Functions unpacked 3/9 8/9 9/9 6/9

Interesting points - 26 1 -

Cjmps - 163 214 -

Snapshots - 113 153 4466

Tainted-consistent cjmps - 17 31 4096

Tainted-inconsistent cjmps - 96 122 370

Untainted cjmps - 17 34 -

Long traces discarded - 9 34 -

Time 30m 3h 2.75h 8h

Conclusions
•  Plain vanilla multi-path exploration was

not able to recover the code in a
reasonable time (even with partial/
inconsistent exploration)

•  With heuristic:
–  Almost 100% recovery of code / data
–  Significant reduction of time /

resources when applying heuristics

Discussion
•  Strong limitations for sample selection
–  For backpack, we needed linux-based source code.

–  We needed sufficiently complex samples:
•  For Armadillo, several pages of code.
•  Complex parsing routines or logic.

–  We needed non-packed samples.
•  Otherwise, the packer would reveal all the original

code at once.
–  Simple malware families execute most the code in a

single run (we needed bots).

Discussion
•  Technical complexity of protectors may affect multi-path

exploration

–  Calling convention violation

–  Alternative methods to redirect control flow (push + ret,
indirect calls, SEH/VEH based…)

–  Resource exhaustion (intentionally introduce complexity
to exhaust time-consuming analysis engines such as
emulators)

–  Nanomites (substitute branches by interrupts, compute
the branch in a separate region of code or process)

Questions!

talosintelligence.com
blog.talosintel.com

@talossecurity

